Almost commutative Q-algebras and derived brackets

被引:0
|
作者
Bruce, Andrew James [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Noncommutative geometry; almost commutative algebras; Lie algebroids; Q-manifolds; NONCOMMUTATIVE SUPERGEOMETRY; DIFFERENTIAL-CALCULUS; LIE BRACKETS; Q-MANIFOLDS; DEFORMATIONS; GEOMETRY;
D O I
10.4171/JNCG/377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of almost commutative Q -algebras and demonstrate how the derived bracket formalism of Kosmann-Schwarzbach generalises to this setting. In particular, we construct 'almost commutative Lie algebroids' following Vaintrob's Q -manifold understanding of classical Lie algebroids. We show that the basic tenets of the theory of Lie algebroids carry over verbatim to the almost commutative world.
引用
收藏
页码:681 / 707
页数:27
相关论文
共 50 条