Stabilities in FDEs by Schauder's theorem

被引:9
作者
Furumochi, Tetsuo [1 ]
机构
[1] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
关键词
Stability; Functional differential equations; Schauder's theorem;
D O I
10.1016/j.na.2005.02.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a series of papers (Burton and Furumochi (Dyn. Syst. Appl. 10 (2001) 89-116; Funkcial. Ekvac. 44 (2001) 71-82; Nonlinear Anal. 49 (2002) 445-454; Dyn. Syst. Appl. 11 (2002) 499-521; Nonlinear Stud., to appear), Burton (Nonlinear Stud. 9 (2002) 181-190) Furumochi (Qualitative Theor. Differential Equations, to appear)), stability properties of solutions of FDEs have been investigated by means of fixed point theory. Here we obtain new stability results for super-linear FDEs by using Schauder's first theorem and a weighted norm, and show some examples. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E217 / E224
页数:8
相关论文
共 50 条
  • [1] Existence of exponentially spatially localized breather solutions for lattices of nonlinearly coupled particles: Schauder's fixed point theorem approach
    Hennig, Dirk
    Karachalios, Nikos I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [2] Stabilities for Hutchinsion?s equations with nonlocal terms
    Yang, Jinji
    Tian, Yanling
    RESULTS IN APPLIED MATHEMATICS, 2022, 15
  • [3] APPROXIMATE CONTROLLABILITY FOR SOME RETARDED INTEGRODIFFERENTIAL INCLUSIONS USING A VERSION OF THE LERAY-SCHAUDER FIXED POINT THEOREM FOR THE MULTIVALUED MAPS
    El Matloub, Jaouad
    Ezzinbi, Khalil
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024, 14 (03) : 821 - 847
  • [4] Turan's theorem inverted
    Nikiforov, Vladimir
    DISCRETE MATHEMATICS, 2010, 310 (01) : 125 - 131
  • [5] Variations of Cohen's theorem
    Chae, GJ
    Kim, HO
    Kim, RY
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2001, 18 (03) : 769 - 775
  • [6] Variations of Cohen’s theorem
    G. J. Chae
    H. O. Kim
    R. Y. Kim
    Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 769 - 775
  • [7] Kharitonov's Theorem and Bezoutians
    Olshevsky, A
    Olshevsky, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 285 - 297
  • [8] Generalizing Morley's theorem
    Hyttinen, T
    MATHEMATICAL LOGIC QUARTERLY, 1998, 44 (02) : 176 - 184
  • [9] QUANTITATIVE OBATA'S THEOREM
    Cavalletti, Fabio
    Mondino, Andrea
    Semola, Daniele
    ANALYSIS & PDE, 2023, 16 (06): : 1389 - 1431
  • [10] On Araujo's Theorem for Flows
    Arbieto, A.
    Morales, C. A.
    Santiago, B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (01) : 55 - 69