Small area estimation under unit-level temporal linear mixed models

被引:5
|
作者
Morales, Domingo [1 ]
Santamaria, Laureano [1 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res, Alacant, Spain
关键词
Small area estimation; linear mixed models; empirical best linear unbiased predictor; mean squared error; average income; MEAN SQUARED ERROR; TIME-SERIES; 4-PERSON FAMILIES; BAYES ESTIMATION; MEDIAN INCOME; PREDICTION;
D O I
10.1080/00949655.2019.1590578
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data from past time periods and temporal correlation are rich sources of information for estimating small area parameters at the current period. This paper investigates the use of unit-level temporal linear mixed models for estimating linear parameters. Two models are considered, with domain and domain-time random effects. The first model assumes time independency and the second one AR(1)-type time correlation. They are fitted by a Fisher-scoring algorithm that calculates the residual maximum likelihood estimators of the model parameters. Based on the introduced models, empirical best linear unbiased predictors of small area linear parameters are studied, and analytic estimators for evaluating the performance of their mean squared errors are proposed. Three simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the estimators of the mean squared error. By using data of the Spanish surveys of income and living conditions of 2004-2008, an application to the estimation of 2008 average normalized net annual incomes in Spanish provinces by sex is given.
引用
收藏
页码:1592 / 1620
页数:29
相关论文
共 50 条
  • [1] Small area estimation of additive parameters under unit-level generalized linear mixed models
    Hobza, Tomas
    Marhuenda, Yolanda
    Morales, Domingo
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2020, 44 (01) : 3 - 38
  • [2] Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models
    Hobza, Tomas
    Morales, Domingo
    Santamaria, Laureano
    TEST, 2018, 27 (02) : 270 - 294
  • [3] Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models
    Tomáš Hobza
    Domingo Morales
    Laureano Santamaría
    TEST, 2018, 27 : 270 - 294
  • [4] Small area estimation of labour force indicators under unit-level multinomial mixed models
    Bugallo, Maria
    Esteban, Maria Dolores
    Hobza, Tomas
    Morales, Domingo
    Perez, Agustin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 188 (01) : 241 - 270
  • [5] Small area estimation of expenditure means and ratios under a unit-level bivariate linear mixed model
    Esteban, Maria Dolores
    Lombardia, Maria Jose
    Lopez-Vizcaino, Esther
    Morales, Domingo
    Perez, Agustin
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (01) : 143 - 168
  • [6] Small area estimation under area-level generalized linear mixed models
    Faltys, Ondrej
    Hobza, Tomas
    Morales, Domingo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7404 - 7426
  • [7] Small area estimation of complex parameters under unit-level models with skew-normal errors
    Diallo, Mamadou S.
    Rao, J. N. K.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (04) : 1092 - 1116
  • [8] Clustering in small area estimation with area level linear mixed models
    Torkashvand, Elaheh
    Jozani, Mohammad Jafari
    Torabi, Mahmoud
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (04) : 1253 - 1279
  • [9] Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data
    Breidenbach, Johannes
    Magnussen, Steen
    Rahlf, Johannes
    Astrup, Rasmus
    REMOTE SENSING OF ENVIRONMENT, 2018, 212 : 199 - 211
  • [10] Small Area Estimation of Household Economic Indicators under Unit-Level Generalized Additive Models for Location, Scale and Shape
    Mori, Lorenzo
    Ferrante, Maria Rosaria
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2024, 13 (01) : 160 - 196