共 38 条
Alpha-naphthylisothiocyanate impairs bile acid homeostasis through AMPK-FXR pathways in rat primary hepatocytes
被引:32
作者:
Li, Xiaojiaoyang
[1
]
Liu, Runping
[3
]
Yu, Linxi
[1
]
Yuan, Zihang
[1
]
Sun, Rong
[4
]
Yang, Hang
[1
]
Zhang, Luyong
[1
,2
]
Jiang, Zhenzhou
[1
,2
]
机构:
[1] China Pharmaceut Univ, Jiangsu Key Lab Drug Screening, Nanjing 210009, Jiangsu, Peoples R China
[2] China Pharmaceut Univ, Jiangsu Ctr Pharmacodynam Res & Evaluat, Nanjing, Jiangsu, Peoples R China
[3] Virginia Commonwealth Univ, Med Coll Virginia, Dept Microbiol & Immunol, Richmond, VA 23298 USA
[4] Shandong Res Acad Tradit Chinese Med, Dept Med Pathomorphol, Jinan, Peoples R China
来源:
关键词:
ANIT;
AMPK;
FXR;
A(1)AR;
Cholestasis;
Hepatocyte;
LIVER-INJURY;
NUCLEAR RECEPTORS;
EXPRESSION;
TRANSPORTERS;
CHOLESTASIS;
ACTIVATION;
GROWTH;
MICE;
D O I:
10.1016/j.tox.2016.09.020
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Alpha-naphthylisothiocyanate (ANIT) is widely used to induce cholestasis in basic researches. Although direct damage induced by ANIT to bile duct epithelial cells has been documented in previous studies, few works investigated ANIT-induced effects on hepatocytes. Our previous study indicated that activated AMP -activated protein kinase (AMPK) inhibited farnesoid X receptor (FXR) expression and further participated in the pathogenesis of estrogen-induced cholestasis. However, whether ANIT has effects on bile acid homeostasis in hepatocytes, and the role of AMPK-FXR pathway played in these effects remain unclear. In this study, our results shOwed that ANIT induced intracellular bile acid accumulation without obvious cellular toxicity in sandwich cultured rat primary hepatocytes (SCRHs), accompanied with significant decreased expression of FXR and bile acid transporters. AMPK activation via ERK1/2-LKB1 pathway was critical for ANIT-induced effects on hepatocytes. Compound C, specific AMPK inhibitor, blocked ANIT-regulated gene expression, decreased bile acid accumulation and recovered bile canalicular structure both in vitro and in vivo. Furthermore, the expression of A(1) adenosine receptor (A(1)AR), a potential cholestatic target, was relatively low in hepatocytes compared with expression in rat whole livers. Consistent with these findings, DPCPX, a classic antagonist of A1AR, had no effect on ANIT-induced hepatocytes injury. In summary, our results indicate that AMPK-FXR signaling is critical for ANIT-induced toxic effects on hepatocytes, provide new insights into the pathogenesis of ANIT-induced cholestasis, and suggest AMPK-FXR pathway as a potential therapeutic target for cholestasis. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:106 / 115
页数:10
相关论文