ENAC1, a NAC Transcription Factor, is an Early and Transient Response Regulator Induced by Abiotic Stress in Rice (Oryza sativa L.)

被引:31
|
作者
Sun, Hui [1 ]
Huang, Xi [1 ]
Xu, Xingjun [1 ]
Lan, Hongxia [1 ]
Huang, Ji [1 ]
Zhang, Hong-Sheng [1 ]
机构
[1] Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rice; Transcription factor; NAC; Abiotic stress; ABA; SALT TOLERANCE; FACTOR FAMILY; E3; LIGASE; MOLECULAR CHARACTERIZATION; SIGNAL-TRANSDUCTION; FUNCTIONAL-ANALYSIS; EXPRESSION ANALYSIS; ARABIDOPSIS; DROUGHT; GENE;
D O I
10.1007/s12033-011-9477-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The plant-specific NAC (NAM, ATAF, and CUC)-domain proteins play important roles in plant development and stress responses. In this research, a full-length cDNA named ENAC1 (early NAC-domain protein induced by abiotic stress 1) was isolated from rice. ENAC1 possess one NAC domain in the N-terminus. Comparative time-course expression analysis indicated that ENAC1 expression, similar with OsDREB1A, was induced very quickly by various abiotic stresses including salt, drought, cold, and exogenous abscisic acid. However, the induction of ENAC1 by abiotic stress was transient and lasted up to 3 h, whereas that of OsDREB1A maintained longer. The promoter sequence of ENAC1 harbors several cis-elements including ABA response elements, but the well-known dehydration responsive element/C-repeat element is absent. The ENAC1-GFP (green fluorescent protein) fusion protein was localized in the nucleus of rice protoplast cell. Yeast hybrid assays revealed that ENAC1 was a transcription activator and bound to NAC recognition sequence (NACRS). Co-expression analysis suggested that ENAC1 co-expressed with a number of stress-related genes. Taken together, ENAC1 may be an early transcription activator of stress responses and function in the regulation of NACRS-mediated gene expression under abiotic stress.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [21] Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress
    Chauhan, Harsh
    Khurana, Neetika
    Agarwal, Pinky
    Khurana, Paramjit
    MOLECULAR GENETICS AND GENOMICS, 2011, 286 (02) : 171 - 187
  • [22] Global Identification and Characterization of C2 Domain-Containing Proteins Associated with Abiotic Stress Response in Rice (Oryza sativa L.)
    Zhang, Hongjia
    Zeng, Yuting
    Seo, Jeonghwan
    Kim, Yu-Jin
    Kim, Sun Tae
    Kwon, Soon-Wook
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [23] Identification and characterization of abiotic stress-tolerant genes in rice (Oryza sativa L.): a computational approach
    Saurabh Kadam
    Pooja Choudhary
    Devashree Cheulkar
    Rajshri Singh
    Santosh Sawardekar
    Sagar Barage
    Journal of Plant Diseases and Protection, 2024, 131 : 1021 - 1042
  • [24] Expression profiling of ALOG family genes during inflorescence development and abiotic stress responses in rice (Oryza sativa L.)
    Liu, Zhiyuan
    Fan, Zhenjiang
    Wang, Lei
    Zhang, Siyue
    Xu, Weichen
    Zhao, Sijie
    Fang, Sijia
    Liu, Mei
    Kofi, Sackitey Mark
    Zhang, Shuangxi
    Kang, Ningning
    Ai, Hao
    Li, Ruining
    Feng, Tingting
    Wei, Shuya
    Zhao, Heming
    FRONTIERS IN GENETICS, 2024, 15
  • [25] Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (Oryza Sativa L.) by Regulating Antioxidative System and Chilling Response Transcription Factors
    Song, Yue
    Jiang, Meng
    Zhang, Huali
    Li, Ruiqing
    MOLECULES, 2021, 26 (08):
  • [26] Cloning and characterization of a water deficit stress responsive transcription factor gene from Oryza sativa L.
    Mawlong, Thandalin
    Ali, Kishwar
    Tyagi, Aruna
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2016, 54 (01) : 26 - 36
  • [27] OsSLI1, a Homeodomain Containing Transcription Activator, Involves Abscisic Acid Related Stress Response in Rice (Oryza sativa L.)
    Huang, Xi
    Duan, Min
    Liao, Jiakai
    Yuan, Xi
    Chen, Hui
    Feng, Jiejie
    Huang, Ji
    Zhang, Hong-Sheng
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [28] Characterization of the Heat Shock Transcription Factor Family in Medicago sativa L. and Its Potential Roles in Response to Abiotic Stresses
    Liu, Hao
    Li, Xianyang
    Zi, Yunfei
    Zhao, Guoqing
    Zhu, Lihua
    Hong, Ling
    Li, Mingna
    Wang, Shiqing
    Long, Ruicai
    Kang, Junmei
    Yang, Qingchuan
    Chen, Lin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (16)
  • [29] Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage
    Liao, Jiang-Lin
    Zhou, Hui-Wen
    Peng, Qi
    Zhong, Ping-An
    Zhang, Hong-Yu
    He, Chao
    Huang, Ying-Jin
    BMC GENOMICS, 2015, 16
  • [30] The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.)
    Lingling Wang
    Zongli Hu
    Mingku Zhu
    Zhiguo Zhu
    Jingtao Hu
    Ghulam Qanmber
    Guoping Chen
    Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 129 : 161 - 174