Quantum Heisenberg antiferromagnets in a uniform magnetic field: Nonanalytic magnetic field dependence of the magnon spectrum

被引:28
作者
Kreisel, Andreas [1 ]
Sauli, Francesca [1 ]
Hasselmann, Nils [1 ,2 ]
Kopietz, Peter [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Univ Brasilia, Int Ctr Condensed Matter Phys, BR-70910900 Brasilia, DF, Brazil
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevB.78.035127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We reexamine the 1/S correction to the self-energy of the gapless magnon of a D-dimensional quantum Heisenberg antiferromagnet in a uniform magnetic field h using a hybrid approach between 1/S expansion and nonlinear sigma model, where the Holstein-Primakoff bosons are expressed in terms of Hermitian field operators representing the uniform and the staggered components of the spin operators [N. Hasselmann and P. Kopietz, Europhys. Lett. 74, 1067 (2006)]. By integrating over the field associated with the uniform spin fluctuations, we obtain the effective action for the staggered spin fluctuations on the lattice, which contains fluctuations on all length scales and does not have the cutoff ambiguities of the nonlinear sigma model. We show that in dimensions D <= 3, the magnetic-field dependence of the spin-wave velocity (c) over tilde_(h) is nonanalytic in h(2), with (c) over tilde_(h)-(c) over tilde_(0)proportional to h(2) ln vertical bar h vertical bar in D=3, and (c) over tilde_(h)-(c) over tilde (0)proportional to vertical bar h vertical bar in D=2. The frequency-dependent magnon self-energy is found to exhibit an even more singular magnetic-field dependence, implying a strong momentum dependence of the quasiparticle residue of the gapless magnon. We also discuss the problem of spontaneous magnon decay and show that in D>1 dimensions, the damping of magnons with momentum k is proportional to vertical bar k vertical bar(2D-1) if spontaneous magnon decay is kinematically allowed.
引用
收藏
页数:17
相关论文
共 27 条
[1]   AN APPROXIMATE QUANTUM THEORY OF THE ANTIFERROMAGNETIC GROUND STATE [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1952, 86 (05) :694-701
[2]  
[Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
[3]   Infrared behavior of interacting bosons at zero temperature [J].
Castellani, C ;
DiCastro, C ;
Pistolesi, F ;
Strinati, GC .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1612-1615
[4]   TWO-DIMENSIONAL QUANTUM HEISENBERG-ANTIFERROMAGNET AT LOW-TEMPERATURES [J].
CHAKRAVARTY, S ;
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW B, 1989, 39 (04) :2344-2371
[5]   GENERAL THEORY OF SPIN-WAVE INTERACTIONS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1956, 102 (05) :1217-1230
[6]   UNIVERSALITY, LOW-TEMPERATURE PROPERTIES, AND FINITE-SIZE SCALING IN QUANTUM ANTIFERROMAGNETS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1989, 39 (16) :11783-11792
[7]   Unique translation between Hamiltonian operators and functional integrals [J].
Gollisch, T ;
Wetterich, C .
PHYSICAL REVIEW LETTERS, 2001, 86 (01) :1-5
[8]   DYNAMICS OF AN ANTIFERROMAGNET AT LOW TEMPERATURES - SPIN-WAVE DAMPING AND HYDRODYNAMICS [J].
HARRIS, AB ;
KUMAR, D ;
HALPERIN, BI ;
HOHENBER.PC .
PHYSICAL REVIEW B, 1971, 3 (03) :961-&
[9]  
Hasselmann N, 2006, EUROPHYS LETT, V74, P1067, DOI 10.1209/epl/i2006-10060-6epl/
[10]   Effective spin-wave action for ordered Heisenberg antiferromagnets in a magnetic field [J].
Hasselmann, Nils ;
Schuetz, Florian ;
Spremo, Ivan ;
Kopietz, Peter .
COMPTES RENDUS CHIMIE, 2007, 10 (1-2) :60-64