Automatic Modulation Classification of Cochannel Signals using Deep Learning

被引:0
|
作者
Sun, Jiajun [1 ]
Wang, Guohua [2 ]
Lin, Zhiping [1 ]
Razul, Sirajudeen Gulam [2 ]
Lai, Xiaoping [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Sensor Array TL NTU, Singapore, Singapore
[3] Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou, Zhejiang, Peoples R China
来源
2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP) | 2018年
关键词
Automatic modulation classification; machine learning; deep learning; cochannel signal; CNN; RECOGNITION; CUMULANTS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new approach to the automatic modulation classification (AMC) of cochannel signals based on deep learning techniques using convolutional neural network (CNN). Conventional approaches to this problem use features from higher order statistics and cyclic statistics. Data with long length is required to achieve good feature estimation and high classification rate. However, data with long length may cause problems such as latency to practical operations. By applying deep learning techniques based on CNN, AMC can be conducted directly by exploring raw features itself. Meanwhile, oversampled data is reshaped to a two-dimensional data matrix in order to take advantages of the image processing capability of CNN. One main advantage of this method is that much shorter data length is required to achieve good classification rate as compared to conventional approaches. Simulation results are provided to demonstrate the effectiveness of the proposed methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Deep learning-based classification using Cumulants and Bispectrum of EMG signals
    Orosco, Eugenio Conrado
    Amoros, Jeremias
    Gimenez, Javier Alejandro
    Soria, Carlos Miguel
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (12) : 1946 - 1953
  • [42] Radio Signal Automatic Modulation Classification based on Deep Learning and Expert Features
    Yao, Tianyao
    Chai, Yuan
    Wang, Shuai
    Miao, Xiaqing
    Bu, Xiangyuan
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1225 - 1230
  • [43] Deep Learning-based Automatic Modulation Classification for Wireless OFDM Communications
    Huynh-The, Thien
    Pham, Quoc-Viet
    Nguyen, Toan-Van
    Pham, Xuan-Qui
    Kim, Dong-Seong
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 47 - 49
  • [44] Automatic Modulation Classification in Time-Varying Channels Based on Deep Learning
    Zhou, Yu
    Lin, Tian
    Zhu, Yu
    IEEE ACCESS, 2020, 8 (08): : 197508 - 197522
  • [45] Deep Learning Based Automatic Modulation Classification in the Case of Carrier Phase Shift
    Yilmaz, Ramazan
    Pusane, Ali Emre
    2020 43RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2020, : 354 - 357
  • [46] Deep cascading network architecture for robust automatic modulation classification
    Weng, Lintianran
    He, Yuan
    Peng, Jianhua
    Zheng, Jianchao
    Li, Xinyu
    NEUROCOMPUTING, 2021, 455 (455) : 308 - 324
  • [47] Frequency learning attention networks based on deep learning for automatic modulation classification in wireless communication
    Zhang, Duona
    Lu, Yuanyao
    Li, Yundong
    Ding, Wenrui
    Zhang, Baochang
    Xiao, Jing
    PATTERN RECOGNITION, 2023, 137
  • [48] A Noise-aware Deep Learning Model for Automatic Modulation Recognition in Radar Signals
    Aslinezhad, M.
    Sezavar, A.
    Malekijavan, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2023, 36 (08): : 1459 - 1467
  • [49] Deep multilevel architecture for automatic modulation classification
    Parmar, Ashok
    Chouhan, Ankit
    Captain, Kamal
    Patel, Jignesh
    PHYSICAL COMMUNICATION, 2024, 64
  • [50] Automatic Modulation Classification: A Deep Architecture Survey
    Thien Huynh-The
    Quoc-Viet Pham
    Toan-Van Nguyen
    Thanh Thi Nguyen
    Ruby, Rukhsana
    Zeng, Ming
    Kim, Dong-Seong
    IEEE ACCESS, 2021, 9 : 142950 - 142971