Automatic Modulation Classification of Cochannel Signals using Deep Learning

被引:0
|
作者
Sun, Jiajun [1 ]
Wang, Guohua [2 ]
Lin, Zhiping [1 ]
Razul, Sirajudeen Gulam [2 ]
Lai, Xiaoping [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Sensor Array TL NTU, Singapore, Singapore
[3] Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou, Zhejiang, Peoples R China
关键词
Automatic modulation classification; machine learning; deep learning; cochannel signal; CNN; RECOGNITION; CUMULANTS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new approach to the automatic modulation classification (AMC) of cochannel signals based on deep learning techniques using convolutional neural network (CNN). Conventional approaches to this problem use features from higher order statistics and cyclic statistics. Data with long length is required to achieve good feature estimation and high classification rate. However, data with long length may cause problems such as latency to practical operations. By applying deep learning techniques based on CNN, AMC can be conducted directly by exploring raw features itself. Meanwhile, oversampled data is reshaped to a two-dimensional data matrix in order to take advantages of the image processing capability of CNN. One main advantage of this method is that much shorter data length is required to achieve good classification rate as compared to conventional approaches. Simulation results are provided to demonstrate the effectiveness of the proposed methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Learning based Automatic Signal Modulation Classification
    Lu, Jingyang
    Li, Yi
    Chen, Genshe
    Shen, Dan
    Tian, Xin
    Khanh Pham
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XII, 2019, 11017
  • [22] A Hybrid Deep Learning Model for Automatic Modulation Classification
    Kim, Seung-Hwan
    Moon, Chang-Bae
    Kim, Jae-Woo
    Kim, Dong-Seong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (02) : 313 - 317
  • [23] Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks
    Zang, Ke
    Wu, Wenqi
    Luo, Wei
    SENSORS, 2021, 21 (19)
  • [24] Adversarial Transfer Learning for Deep Learning Based Automatic Modulation Classification
    Bu, Ke
    He, Yuan
    Jing, Xiaojun
    Han, Jindong
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 880 - 884
  • [25] Deep Learning for Heart Sounds Classification Using Scalograms and Automatic Segmentation of PCG Signals
    Gelpud, John
    Castillo, Silvia
    Jojoa, Mario
    Garcia-Zapirain, Begonya
    Achicanoy, Wilson
    Rodrigo, David
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 583 - 596
  • [26] Modulation Classification of QAM Signals with Different Phase Noise Levels Using Deep Learning
    Alhazmi, Hatim
    Almarhabi, Alhussain
    Samarkandi, Abdullah
    Alymani, Mofadal
    Alhazmi, Mohsen H.
    Sheng, Zikang
    Yao, Yu-Dong
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 57 - 61
  • [27] Imperceptible UAPs for Automatic Modulation Classification Based on Deep Learning
    Xu, Dongwei
    Li, Jiangpeng
    Chen, Zhuangzhi
    Xuan, Qi
    Shen, Weiguo
    Yang, Xiaoniu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (02) : 987 - 991
  • [28] Signal Automatic Modulation Classification and Recognition in View of Deep Learning
    Xu, Tianpei
    Ma, Ying
    IEEE ACCESS, 2023, 11 : 114623 - 114637
  • [29] Cross Model Deep Learning Scheme for Automatic Modulation Classification
    Ma, Hongbin
    Xu, Guangying
    Meng, Huixiao
    Wang, Min
    Yang, Shuyuan
    Wu, Ruowu
    Wang, Wei
    IEEE ACCESS, 2020, 8 : 78923 - 78931
  • [30] Deep Learning Applied to Automatic Modulation Classification at 28 GHz
    Sun, Yilin
    Ball, Edward A.
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 403 - 414