AN EXPLICIT INCIDENCE THEOREM IN Fp

被引:20
作者
Helfgott, Harald Andres [1 ]
Rudnev, Misha [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
SUM-PRODUCT ESTIMATE;
D O I
10.1112/S0025579310001208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P = A x A subset of F-p x F-p, p a prime. Assume that P = A x A has n elements, n < p. See P as a set of points in the plane over F-p. We show that the pairs of points in P determine >= cn(1+1/267) lines, where c is an absolute constant. We derive from this an incidence theorem: the number of incidences between a set of n points and a set of n lines in the projective plane over F-p(n < p) is bounded by Cn(3/2-1/10678), where C is an absolute constant.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 14 条
[11]  
Shen C.-Y., 2008, ELECTRON J COMB, V15, P7
[12]   EXTREMAL PROBLEMS IN DISCRETE GEOMETRY [J].
SZEMEREDI, E ;
TROTTER, WT .
COMBINATORICA, 1983, 3 (3-4) :381-392
[13]  
Tao T., 2006, ADDITIVE COMBINATORI, P530
[14]  
Vinh L. A., 2010, EUROPEAN J IN PRESS