AN EXPLICIT INCIDENCE THEOREM IN Fp

被引:20
作者
Helfgott, Harald Andres [1 ]
Rudnev, Misha [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
SUM-PRODUCT ESTIMATE;
D O I
10.1112/S0025579310001208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P = A x A subset of F-p x F-p, p a prime. Assume that P = A x A has n elements, n < p. See P as a set of points in the plane over F-p. We show that the pairs of points in P determine >= cn(1+1/267) lines, where c is an absolute constant. We derive from this an incidence theorem: the number of incidences between a set of n points and a set of n lines in the projective plane over F-p(n < p) is bounded by Cn(3/2-1/10678), where C is an absolute constant.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 14 条
[1]   ON THE LATTICE PROPERTY OF THE PLANE AND SOME PROBLEMS OF DIRAC, MOTZKIN AND ERDOS IN COMBINATORIAL GEOMETRY [J].
BECK, J .
COMBINATORICA, 1983, 3 (3-4) :281-297
[2]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[3]   MULTILINEAR EXPONENTIAL SUMS IN PRIME FIELDS UNDER OPTIMAL ENTROPY CONDITION ON THE SOURCES [J].
Bourgain, Jean .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) :1477-1502
[4]   On a variant of sum-product estimates and explicit exponential sum bounds in prime fields [J].
Bourgain, L. ;
Garaev, M. Z. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :1-21
[5]  
Fox J., 2009, MINIMIZATION RECEIVE
[6]   An Explicit Sum-Product Estimate in Fp [J].
Garaev, M. Z. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[7]   A slight improvement to Garaev's sum product estimate [J].
Katz, Nets Hawk ;
Shen, Chun-Yen .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2499-2504
[8]  
Konyagin S. V., 2003, MINIMIZATION RECEIVE
[9]  
Li L., 2009, MINIMIZATION RECEIVE
[10]  
Ruzsa I. Z., 1989, SCI A, V3, P97