Work hardening behaviour in banded dual phase steel structures with improved formability

被引:29
作者
Ennis, B. L. [1 ,2 ]
Bos, C. [1 ]
Aarnts, M. P. [1 ]
Lee, P. D. [2 ,3 ]
Jimenez-Melero, E. [2 ]
机构
[1] Tata Steel Res & Dev, NL-1970 CA Ijmuiden, Netherlands
[2] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] RAL, Manchester Xray Imaging Facil, Res Complex Harwell, Didcot OX11 0FA, Oxon, England
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 713卷
基金
英国工程与自然科学研究理事会;
关键词
Mechanical characterization; Hardening; Steel; Austenite; Martensite; Thermo-mechanical processing; ALLOYED TRIP STEELS; DEFORMATION-BEHAVIOR; RETAINED AUSTENITE; TRANSFORMATION; STRENGTH; STRESS; MODEL; QUANTIFICATION; PLASTICITY; EVOLUTION;
D O I
10.1016/j.msea.2017.12.078
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we show how the presence of microstructural banding and segregation affects the work-hardening behaviour of a dual phase steel with improved formability. This steel contains chemical segregation inherited from the casting process. Our previously developed 3D cellular automaton model allowed us to design thermo-mechanical processes to either promote or suppress banding. The bands are properly described as in-plane sheets of martensite grains. Mechanical testing data revealed a significant reduction in tensile strength in banded structures for a similar level of ductility. The work-hardening behaviour in the pre-yield regime, including the yield strength itself, is not correlated to the incidence of segregation and/or microstructural banding. The reduction in ultimate tensile strength in banded structures stems from a reduced work-hardening capacity in the post-yield regime. This is due to increased austenite stability in the banded steels, coupled to the anisotropic strain localisation in the ferritic matrix between martensite bands.
引用
收藏
页码:278 / 286
页数:9
相关论文
共 46 条
[11]   Evolution of microstructural banding during the manufacturing process of dual phase steels [J].
Caballero, Francisca G. ;
Garcia-Junceda, Andrea ;
Capdevila, Carlos ;
de Andres, Carlos Garcia .
MATERIALS TRANSACTIONS, 2006, 47 (09) :2269-2276
[12]   Characterisation of bimodal grain structures in HSLA steels [J].
Chakrabarti, Debalay ;
Davis, Claire ;
Strangwood, Martin .
MATERIALS CHARACTERIZATION, 2007, 58 (05) :423-438
[13]  
De Meyer M, 1999, ISIJ INT, V39, P813
[14]   New thermomechanical strategies for the production of high strength low alloyed multiphase steel showing a transformation induced plasticity (TRIP) effect [J].
Eberle, K ;
Cantinieaux, P ;
Harlet, P .
STEEL RESEARCH, 1999, 70 (06) :233-238
[15]  
Ennis BL, 2017, DATA BRIEF, V10, P330, DOI 10.1016/j.dib.2016.11.073
[16]   Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel [J].
Ennis, B. L. ;
Jimenez-Melero, E. ;
Atzema, E. H. ;
Krugla, M. ;
Azeem, M. A. ;
Rowley, D. ;
Daisenberger, D. ;
Hanlon, D. N. ;
Lee, P. D. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 88 :126-139
[17]   The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel [J].
Ennis, B. L. ;
Jimenez-Melero, E. ;
Mostert, R. ;
Santillana, B. ;
Lee, P. D. .
ACTA MATERIALIA, 2016, 115 :132-142
[18]  
Fisher R.M., 1976, PROC DARKEN C PHYS C, P463
[19]   Local plastic strain evolution in a high strength dual-phase steel [J].
Ghadbeigi, H. ;
Pinna, C. ;
Celotto, S. ;
Yates, J. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (18-19) :5026-5032
[20]   The isotropic shear modulus of multicomponent Fe-base solid solutions [J].
Ghosh, G ;
Olson, GB .
ACTA MATERIALIA, 2002, 50 (10) :2655-2675