Monoamine Transporter Structure, Function, Dynamics, and Drug Discovery: A Computational Perspective

被引:35
|
作者
Manepalli, Sankar [1 ]
Surratt, Christopher K. [2 ]
Madura, Jeffry D. [1 ]
Nolan, Tammy L. [1 ,2 ,3 ]
机构
[1] Duquesne Univ, Ctr Computat Sci, Dept Chem & Biochem, Pittsburgh, PA 15219 USA
[2] Duquesne Univ, Mylan Sch Pharm, Div Pharmaceut Sci, Pittsburgh, PA 15219 USA
[3] Duquesne Univ, Pittsburgh, PA 15282 USA
来源
AAPS JOURNAL | 2012年 / 14卷 / 04期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
homology model; molecular dynamics; monoamine transporter; virtual screening; HUMAN SEROTONIN TRANSPORTER; DEPENDENT NEUROTRANSMITTER TRANSPORTERS; PHARMACOPHORE-BASED DISCOVERY; ANTIDEPRESSANT BINDING-SITE; ANTI-SARS DRUGS; DOPAMINE TRANSPORTER; NOREPINEPHRINE TRANSPORTER; MOLECULAR-DYNAMICS; BACTERIAL HOMOLOG; INHIBITORS;
D O I
10.1208/s12248-012-9391-0
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
With the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure-function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.
引用
收藏
页码:820 / 831
页数:12
相关论文
共 50 条
  • [31] Impact of Quaternary Structure Dynamics on Allosteric Drug Discovery
    Jaffe, Eileen K.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2013, 13 (01) : 55 - 63
  • [32] The vesicular monoamine transporter is not regulated by dopaminergic drug treatments
    VanderBorght, T
    Kilbourn, M
    Desmond, T
    Kuhl, D
    Frey, K
    EUROPEAN JOURNAL OF PHARMACOLOGY, 1995, 294 (2-3) : 577 - 583
  • [33] Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
    Bitencourt-Ferreira, Gabriela
    Villarreal, Marcos A.
    Quiroga, Rodrigo
    Biziukova, Nadezhda
    Poroikov, Vladimir
    Tarasova, Olga
    de Azevedo Junior, Walter F.
    CURRENT MEDICINAL CHEMISTRY, 2024, 31 (17) : 2361 - 2377
  • [34] Computational Perspective on the Current State of the Methods and New Challenges in Cancer Drug Discovery
    Wei, Dong-Qing
    Selvaraj, Gurudeeban
    Kaushik, Aman Chandra
    CURRENT PHARMACEUTICAL DESIGN, 2018, 24 (32) : 3725 - 3726
  • [35] Function and structure of bradykinin receptor 2 for drug discovery
    Shen, Jin-kang
    Zhang, Hai-tao
    ACTA PHARMACOLOGICA SINICA, 2023, 44 (03) : 489 - 498
  • [36] Function and structure of bradykinin receptor 2 for drug discovery
    Jin-kang Shen
    Hai-tao Zhang
    Acta Pharmacologica Sinica, 2023, 44 : 489 - 498
  • [37] Gut hormone GPCRs: structure, function, drug discovery
    Cordomi, Arnau
    Fourmy, Daniel
    Tikhonova, Irina G.
    CURRENT OPINION IN PHARMACOLOGY, 2016, 31 : 63 - 67
  • [38] Thymidylate synthase structure, function and implication in drug discovery
    Costi, MP
    Ferrari, S
    Venturelli, A
    Caló, S
    Tondi, D
    Barlocco, D
    CURRENT MEDICINAL CHEMISTRY, 2005, 12 (19) : 2241 - 2258
  • [39] Computational Approaches for Drug Discovery
    Brogi, Simone
    MOLECULES, 2019, 24 (17):
  • [40] Computational methods in drug discovery
    Leelananda, Sumudu P.
    Lindert, Steffen
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2016, 12 : 2694 - 2718