Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations

被引:61
作者
Dragnev, DL [1 ]
机构
[1] Courant Inst, New York, NY USA
关键词
D O I
10.1002/cpa.20018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study pseudoholomorphic maps from a punctured Riemann surface into the symplectization of a contact manifold. A Fredholm theory yields the virtual dimension of the moduli spaces of such maps in terms of the Euler characteristic of the Riemann surface and the asymptotics data given by the periodic solutions of the Reeb vector field associated to the contact form. The transversality results establish the existence of additional Structure for these spaces. To be more precise, we prove that these spaces are generically smooth manifolds. and therefore their virtual dimension coincides with their actual dimension. (C) 2004 Wiley Periodicals. Inc.
引用
收藏
页码:726 / 763
页数:38
相关论文
共 29 条
[1]  
AEBISHER B, 1994, PROGR MATH, V124
[2]  
[Anonymous], ANN SCUOLA NORM SUP
[3]  
Arnol'd VI., 1967, FUNKT ANAL PRIL, V1, P1, DOI 10.1007/BF01075861
[4]  
Audin M., 1994, PROGR MATH, V117
[5]   PROGRESS IN THE THEORY OF COMPLEX ALGEBRAIC-CURVES [J].
EISENBUD, D ;
HARRIS, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 21 (02) :205-232
[6]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560
[7]  
ELIASSON H, 1967, J DIFFER GEOM, V1, P169
[8]   COHERENT ORIENTATIONS FOR PERIODIC ORBIT PROBLEMS IN SYMPLECTIC-GEOMETRY [J].
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (01) :13-38
[10]   SYMPLECTIC HOMOLOGY-I OPEN SETS IN C(N) [J].
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (01) :37-88