Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures

被引:188
|
作者
Pyka, Grzegorz [1 ,2 ]
Kerckhofs, Greet [1 ,2 ,3 ]
Papantoniou, Ioannis [2 ,4 ]
Speirs, Mathew [5 ]
Schrooten, Jan [1 ,2 ]
Wevers, Martine [1 ]
机构
[1] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Div Skeletal Tissue Engn, Prometheus, B-3001 Louvain, Belgium
[3] Univ Liege, Biomech Res Unit, B-4000 Liege, Belgium
[4] Katholieke Univ Leuven, Skeletal Biol & Engn Res Ctr, Lab Tissue Engn, Prometheus, B-3001 Louvain, Belgium
[5] Katholieke Univ Leuven, Dept Mech Engn, Div Prod Engn Machine Design & Automat, B-3001 Louvain, Belgium
基金
欧洲研究理事会;
关键词
Ti6Al4V scaffolds; selective laser melting; surface roughness; surface modification; biomaterials; LASER; MICROSTRUCTURE; OPTIMIZATION; PARAMETERS; TITANIUM; CELLS; SAMPLES; DESIGN;
D O I
10.3390/ma6104737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.
引用
收藏
页码:4737 / 4757
页数:21
相关论文
共 50 条
  • [11] In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects
    Li, Guoyuan
    Wang, Lei
    Pan, Wei
    Yang, Fei
    Jiang, Wenbo
    Wu, Xianbo
    Kong, Xiangdong
    Dai, Kerong
    Hao, Yongqiang
    SCIENTIFIC REPORTS, 2016, 6
  • [12] Predictive Modeling of the Ti6Al4V Alloy Surface Roughness
    Tsourveloudis, Nikos C.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2010, 60 (3-4) : 513 - 530
  • [13] SURFACE ROUGHNESS PREDICTION FOR ADDITIVELY MANUFACTURED TI-6AL-4V COMPONENTS BASED ON SUPERVISED LEARNING MODELS
    Maitra, Varad
    Shi, Jing
    PROCEEDINGS OF ASME 2022 17TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2022, VOL 1, 2022,
  • [14] ADDITIVE MANUFACTURING PARAMETERS OPTIMIZATION OF Ti6AL4V ELI FOR MEDICAL IMPLANTS
    Meena, Vijay Kumar
    Kalra, Parveen
    Sinha, Ravindra Kumar
    SURFACE REVIEW AND LETTERS, 2022, 29 (03)
  • [15] Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V
    Rodriguez, O. L.
    Allison, P. G.
    Whittington, W. R.
    Francis, D. K.
    Rivera, O. G.
    Chou, K.
    Gong, X.
    Butler, T. M.
    Burroughs, J. F.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 641 : 323 - 327
  • [16] Effect of surface treatment on the fatigue strength of additive manufactured Ti6Al4V alloy
    Navarro, Carlos
    Vazquez, Jesus
    Dominguez, Jaime
    Perinan, Antonio
    Herrera Garcia, Marta
    Lasagni, Fernando
    Bernarding, Simon
    Slawik, Sebastian
    Muecklich, Frank
    Boby, Francisco
    Hackel, Lloyd
    FRATTURA ED INTEGRITA STRUTTURALE, 2020, 14 (53): : 337 - 344
  • [17] On the Morphological Deviation in Additive Manufacturing of Porous Ti6Al4V Scaffold: A Design Consideration
    Naghavi, Seyed Ataollah
    Wang, Haoyu
    Varma, Swastina Nath
    Tamaddon, Maryam
    Marghoub, Arsalan
    Galbraith, Rex
    Galbraith, Jane
    Moazen, Mehran
    Hua, Jia
    Xu, Wei
    Liu, Chaozong
    MATERIALS, 2022, 15 (14)
  • [18] AlTiN Coating of Ti6Al4V Alloy Additive Manufactured Parts
    Battiston, S.
    Fiorese, A.
    Biffi, C. A.
    Montagner, F.
    Zin, V
    Gionda, A.
    Fiocchi, J.
    Tuissi, A.
    METALLURGIA ITALIANA, 2020, 112 (02): : 30 - 36
  • [19] Influence of Magnesium Infiltration on Compressive Behavior of Additively Manufactured Porous Ti6Al4V Structure
    Arivazhagan, Adhiyamaan
    Venugopal, Prabhu Raja
    Mohammad, Ashfaq
    Ravi, K. R.
    JOURNAL OF TESTING AND EVALUATION, 2021, 49 (06) : 4326 - 4343
  • [20] Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds
    Weissmann, Volker
    Bader, Rainer
    Hansmann, Harald
    Laufer, Nico
    MATERIALS & DESIGN, 2016, 95 : 188 - 197