Lithium and oxygen adsorption at the β-MnO2 (110) surface

被引:58
|
作者
Mellan, Thomas A. [1 ]
Maenetja, Khomotso P. [2 ]
Ngoepe, Phuti E. [2 ]
Woodley, Scott M. [1 ]
Catlow, C. Richard A. [1 ]
Grau-Crespo, Ricardo [1 ,3 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Univ Limpopo, Mat Modelling Ctr, ZA-0727 Sovenga, South Africa
[3] Univ Reading, Dept Chem, Reading RG6 6AD, Berks, England
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; ELECTRODE; PEROXIDE;
D O I
10.1039/c3ta13559d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption and co-adsorption of lithium and oxygen at the surface of rutile-like manganese dioxide (beta-MnO2), which are important in the context of Li-air batteries, are investigated using density functional theory. In the absence of lithium, the most stable surface of beta-MnO2, the (110), adsorbs oxygen in the form of peroxo groups bridging between two manganese cations. Conversely, in the absence of excess oxygen, lithium atoms adsorb on the (110) surface at two different sites, which are both tri-coordinated to surface oxygen anions, and the adsorption always involves the transfer of one electron from the adatom to one of the five-coordinated manganese cations at the surface, creating (formally) Li+ and Mn3+ species. The co-adsorption of lithium and oxygen leads to the formation of a surface oxide, involving the dissociation of the O-2 molecule, where the O adatoms saturate the coordination of surface Mn cations and also bind to the Li adatoms. This process is energetically more favourable than the formation of gas-phase lithium peroxide (Li2O2) monomers, but less favourable than the formation of Li2O2 bulk. These results suggest that the presence of beta-MnO2 in the cathode of a nonaqueous Li-O-2 battery lowers the energy for the initial reduction of oxygen during cell discharge.
引用
收藏
页码:14879 / 14887
页数:9
相关论文
共 50 条
  • [21] Arsenate adsorption on waste eggshell modified by goethite, α-MnO2 and goethite/α-MnO2
    Markovski, Jasmina S.
    Markovic, Dana D.
    Dokic, Veljko R.
    Mitric, Miodrag
    Ristic, Mirjana D.
    Onjia, Antonije E.
    Marinkovic, Aleksandar D.
    CHEMICAL ENGINEERING JOURNAL, 2014, 237 : 430 - 442
  • [22] ADSORPTION OF OXYGEN AT (110) SILICON SURFACE
    WILHELMS.F
    LECK, JH
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1969, 6 (05): : 908 - &
  • [23] One-step electrochemical synthesis of α-MnO2 and α•γ-MnO2 compounds for lithium batteries
    Hill, LI
    Portal, R
    Verbaere, A
    Guyomard, D
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (11) : A180 - A183
  • [24] α-MnO2 nanotubes: high surface area and enhanced lithium battery properties
    Li, Lihong
    Nan, Caiyun
    Lu, Jun
    Peng, Qing
    Li, Yadong
    CHEMICAL COMMUNICATIONS, 2012, 48 (55) : 6945 - 6947
  • [25] Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries
    Zhang, Xiaole
    Li, Song
    Wang, Shenghe
    Liu, Kun
    Zhang, Zining
    Wen, Zhongsheng
    Ji, Shijun
    Sun, Juncai
    IONICS, 2022, 28 (01) : 139 - 149
  • [26] Surface oxygen vacancies boosted high rate performance of porous MnO2 anode for lithium-ion batteries
    Xiaole Zhang
    Song Li
    Shenghe Wang
    Kun Liu
    Zining Zhang
    Zhongsheng Wen
    Shijun Ji
    Juncai Sun
    Ionics, 2022, 28 : 139 - 149
  • [27] THE VERSATILITY OF MNO2 FOR LITHIUM BATTERY APPLICATIONS
    THACKERAY, MM
    ROSSOUW, MH
    DEKOCK, A
    DELAHARPE, AP
    GUMMOW, RJ
    PEARCE, K
    LILES, DC
    JOURNAL OF POWER SOURCES, 1993, 43 (1-3) : 289 - 300
  • [28] Mechanism of lithium ion insertion into λ-MnO2
    Kanzaki, Yasushi
    Taniguchi, Akira
    Abe, Mitsuo
    Journal of the Electrochemical Society, 1991, 138 (01) : 333 - 334
  • [29] Understanding of lithium insertion into γ-MnO2 compounds
    Sarciaux, S
    La Salle, AL
    Verbaere, A
    Piffard, Y
    Guyomard, D
    SOLID STATE IONICS V, 1999, 548 : 251 - 260
  • [30] Improving the lead adsorption performance of mesoporous MnO2 by plasma surface modification
    Zhang, Haipeng
    Yang, Yanju
    Yuan, Limin
    Liu, Guodong
    Shan, Yuhua
    Qian, Xiaoqing
    Wang, Juanjuan
    DESALINATION AND WATER TREATMENT, 2020, 189 : 283 - 295