The Hilbert property for arithmetic schemes

被引:1
|
作者
Luger, Cedric [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55099 Mainz, Germany
关键词
integral points; Hilbert property; Hilbert?s irreducibility theorem; arithmetic schemes; RAMIFIED COVERS; RATIONAL-POINTS; VARIETIES;
D O I
10.4064/aa211214-16-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:115 / 126
页数:12
相关论文
共 50 条
  • [31] Arithmetic purity of strong approximation for homogeneous spaces
    Cao, Yang
    Liang, Yongqi
    Xu, Fei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 334 - 368
  • [32] Some consequences of Wiesend’s higher dimensional class field theoryAppendix to: “Class field theory for arithmetic schemes” by G. Wiesend
    Alexander Schmidt
    Mathematische Zeitschrift, 2007, 256 : 731 - 736
  • [33] Arithmetic hyperbolicity and a stacky Chevalley-Weil theorem
    Javanpeykar, Ariyan
    Loughran, Daniel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (03): : 846 - 869
  • [34] Arithmetic Laplacians
    Buium, Alexandru
    Simanca, Santiago R.
    ADVANCES IN MATHEMATICS, 2009, 220 (01) : 246 - 277
  • [35] The tight approximation property
    Benoist, Olivier
    Wittenberg, Olivier
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 776 : 151 - 200
  • [36] Arithmetic of Pell surfaces
    Hambleton, S.
    Lemmermeyer, F.
    ACTA ARITHMETICA, 2011, 146 (01) : 1 - 12
  • [37] Weights in arithmetic geometry
    Jannsen, Uwe
    JAPANESE JOURNAL OF MATHEMATICS, 2010, 5 (01): : 73 - 102
  • [38] Hilbert Lattice Equations
    Megill, Norman D.
    Pavicic, Mladen
    ANNALES HENRI POINCARE, 2010, 10 (07): : 1335 - 1358
  • [39] Arithmetic occult period maps
    Achter, Jeffrey D.
    ALGEBRAIC GEOMETRY, 2020, 7 (05): : 581 - 606
  • [40] ARITHMETIC SCHEMA CLASS BODIES
    Szamuely, Tamas
    ASTERISQUE, 2010, (332) : 257 - 286