The Schur Geometrical Convexity of the Extended Mean Values

被引:1
|
作者
Chu Yuming [1 ]
Zhang Xiaoming [2 ]
Wang Gendi [3 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Haining Radio & TV Univ, Haining 314400, Peoples R China
[3] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
Extended mean value; Schur convex; Schur concave; Schur geometrically convex; Schur geometrically concave;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the extended mean values E(r,s; x, y) are Schur geometrically convex (or concave, respectively) with respect to (x, y) is an element of (0,infinity) x (0,infinity) if and only if s + r >= 0 (or s + r <= 0, respectively).
引用
收藏
页码:707 / 718
页数:12
相关论文
共 22 条
  • [21] THE SCHUR-HARMONIC-CONVEXITY OF DUAL FORM OF THE HAMY SYMMETRIC FUNCTION
    Meng, Junxia
    Chu, Yuming
    Tang, Xiaomin
    MATEMATICKI VESNIK, 2010, 62 (01): : 37 - 46
  • [22] Schur convexity of a function whose fourth-order derivative is non-negative and related inequalities
    Wu, Yiting
    Meng, Qing
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 655 - 662