The Schur Geometrical Convexity of the Extended Mean Values

被引:1
作者
Chu Yuming [1 ]
Zhang Xiaoming [2 ]
Wang Gendi [3 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Haining Radio & TV Univ, Haining 314400, Peoples R China
[3] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
Extended mean value; Schur convex; Schur concave; Schur geometrically convex; Schur geometrically concave;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the extended mean values E(r,s; x, y) are Schur geometrically convex (or concave, respectively) with respect to (x, y) is an element of (0,infinity) x (0,infinity) if and only if s + r >= 0 (or s + r <= 0, respectively).
引用
收藏
页码:707 / 718
页数:12
相关论文
共 21 条
[11]  
Marshall Albert W., 1979, INEQUALITIES THEORY, V143
[12]  
Montel Paul, 1928, Journal de Mathematiques Pures et Appliquees, V9, P29
[13]   Convexity according to the geometric mean [J].
Niculescu, CP .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (02) :155-167
[14]   INEQUALITIES FOR DIFFERENCES OF POWERS [J].
PALES, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 131 (01) :271-281
[15]   A note on Schur-convexity of extended mean values [J].
Qi, F .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (05) :1787-1793
[16]   Notes on the Schur-convexity of the extended mean values [J].
Qi, F ;
Sándor, J ;
Dragomir, SS ;
Sofo, A .
TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (03) :411-420
[17]  
SCHNURER OC, 2005, RESULTS MATH, V48, P158
[18]   An alternative note on the Schur-convexity of the extended mean values [J].
Shi, Huan-Nan ;
Wu, Shan-He ;
Qi, Feng .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (02) :219-224
[19]  
Stolarsky KB, 1975, MATH MAG, V48, P87
[20]  
TITARENKO V, 2006, J INVERSE ILL POSED, V14, P735