The Schur Geometrical Convexity of the Extended Mean Values

被引:1
|
作者
Chu Yuming [1 ]
Zhang Xiaoming [2 ]
Wang Gendi [3 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Haining Radio & TV Univ, Haining 314400, Peoples R China
[3] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
Extended mean value; Schur convex; Schur concave; Schur geometrically convex; Schur geometrically concave;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the extended mean values E(r,s; x, y) are Schur geometrically convex (or concave, respectively) with respect to (x, y) is an element of (0,infinity) x (0,infinity) if and only if s + r >= 0 (or s + r <= 0, respectively).
引用
收藏
页码:707 / 718
页数:12
相关论文
共 22 条
  • [1] NECESSARY AND SUFFICIENT CONDITIONS FOR THE SCHUR HARMONIC CONVEXITY OR CONCAVITY OF THE EXTENDED MEAN VALUES
    Xia, Wei-Feng
    Chu, Yu-Ming
    Wang, Gen-Di
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 121 - 132
  • [2] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    夏卫锋
    褚玉明
    ActaMathematicaScientia, 2011, 31 (03) : 1103 - 1112
  • [3] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    Xia Weifeng
    Chu Yuming
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 1103 - 1112
  • [4] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
    Science China Mathematics, 2009, (10) : 2099 - 2106
  • [5] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    YuMing Chu
    WeiFeng Xia
    Science in China Series A: Mathematics, 2009, 52 : 2099 - 2106
  • [6] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    Chu YuMing
    Xia WeiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2099 - 2106
  • [7] Schur-Convexity of Generalized Heronian Mean
    Zhang, Tian-yu
    Ji, Ai-ping
    INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 25 - 33
  • [8] SCHUR-GEOMETRIC AND SCHUR-HARMONIC CONVEXITY OF WEIGHTED INTEGRAL MEAN
    Kovac, Sanja
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (02) : 225 - 233
  • [9] SCHUR CONVEXITY PROPERTIES FOR THE ELLIPTIC NEUMAN MEAN WITH APPLICATIONS
    Song, Ying-Qing
    Wang, Miao-Kun
    Chu, Yu-Ming
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (01): : 185 - 194
  • [10] Schur convexity for a class of symmetric functions
    YuMing Chu
    WeiFeng Xia
    TieHong Zhao
    Science China Mathematics, 2010, 53 : 465 - 474