RADII OF STARLIKENESS AND CONVEXITY OF ANALYTIC FUNCTIONS SATISFYING CERTAIN COEFFICIENT INEQUALITIES

被引:8
|
作者
Ravichandran, V. [1 ,2 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
关键词
univalent functions; starlike functions; convex functions; uniformly convex functions; parabolic starlike functions; radius problems; SUBORDINATION;
D O I
10.2478/s12175-013-0184-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 <= alpha < 1, the sharp radii of starlikeness and convexity of order a for functions of the form f(z) = z + a(2)z(2) + a(3)z(3) + ... whose Taylor coefficients an satisfy the conditions vertical bar a(2)vertical bar = 2b, 0 <= b <= 1, and vertical bar a(n)vertical bar <= n, M or M/n (M > 0) for n = 3 are obtained. Also a class of functions related to Caratheodory functions is considered. (C) 2014 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [41] Coefficient inequalities for certain univalent functions
    Sekine, T
    Owa, S
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (04): : 535 - 544
  • [42] RADII OF STARLIKENESS OF SOME SPECIAL FUNCTIONS
    Baricz, Arpad
    Dimitrov, Dimitar K.
    Orhan, Halit
    Yagmur, Nihat
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3355 - 3367
  • [43] Radius of Starlikeness for Classes of Analytic Functions
    See Keong Lee
    Kanika Khatter
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4469 - 4493
  • [44] Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain
    Muhammad Sabil Ur Rehman
    Qazi Zahoor Ahmad
    H. M. Srivastava
    Nazar Khan
    Maslina Darus
    Muhammad Tahir
    Journal of Inequalities and Applications, 2020
  • [45] Radius of Starlikeness for Classes of Analytic Functions
    Lee, See Keong
    Khatter, Kanika
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4469 - 4493
  • [46] Coefficient Bounds for Certain Analytic Functions
    Kanika Khatter
    See Keong Lee
    S. Sivaprasad Kumar
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 455 - 490
  • [47] Fekete-Szego and Hankel inequalities for certain class of analytic functions related to the sine function
    Tang, Huo
    Murugusundaramoorthy, Gangadharan
    Li, Shu-Hai
    Ma, Li-Na
    AIMS MATHEMATICS, 2022, 7 (04): : 6365 - 6380
  • [48] SHARP INEQUALITIES FOR ZALCMAN FUNCTIONAL OF LOGARITHMIC COEFFICIENTS OF INVERSE FUNCTIONS IN CERTAIN CLASSES OF ANALYTIC FUNCTIONS
    Lecko, Adam
    Smiarowska, Aarbara
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2025, 19 (01): : 81 - 97
  • [49] On Some Differential Inequalities for Certain Analytic Functions
    Jeyaraman, M. P.
    Lavanya, V. Agnes Sagaya Judy
    Farzana, H. Aaisha
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (02): : 127 - 137
  • [50] Radius of convexity for certain analytic functions associated with the lemniscate of Bernoulli
    Cang, Yi-Ling
    Liu, Jin-Lin
    EXPOSITIONES MATHEMATICAE, 2015, 33 (03) : 387 - 391