RADII OF STARLIKENESS AND CONVEXITY OF ANALYTIC FUNCTIONS SATISFYING CERTAIN COEFFICIENT INEQUALITIES

被引:8
|
作者
Ravichandran, V. [1 ,2 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
关键词
univalent functions; starlike functions; convex functions; uniformly convex functions; parabolic starlike functions; radius problems; SUBORDINATION;
D O I
10.2478/s12175-013-0184-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 <= alpha < 1, the sharp radii of starlikeness and convexity of order a for functions of the form f(z) = z + a(2)z(2) + a(3)z(3) + ... whose Taylor coefficients an satisfy the conditions vertical bar a(2)vertical bar = 2b, 0 <= b <= 1, and vertical bar a(n)vertical bar <= n, M or M/n (M > 0) for n = 3 are obtained. Also a class of functions related to Caratheodory functions is considered. (C) 2014 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [21] CERTAIN INEQUALITIES FOR CLASSES OF ANALYTIC FUNCTIONS WITH VARYING ARGUMENT OF COEFFICIENTS
    Dziok, J.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 389 - 398
  • [22] Univalence and Starlikeness of Certain Classes of Analytic Functions
    Alarifi, Najla M.
    Obradovic, M.
    SYMMETRY-BASEL, 2023, 15 (05):
  • [23] Coefficient inequalities for certain starlike and convex functions
    Kumar, Sushil
    Cetinkaya, Asena
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (01): : 156 - 171
  • [24] Starlikeness of certain non-univalent functions
    Adam Lecko
    V. Ravichandran
    Asha Sebastian
    Analysis and Mathematical Physics, 2021, 11
  • [25] Starlikeness for certain close-to-star functions
    Kanaga, R.
    Ravichandran, V
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (02): : 414 - 432
  • [26] Starlikeness of certain non-univalent functions
    Lecko, Adam
    Ravichandran, V
    Sebastian, Asha
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)
  • [27] On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions
    Nunokawa, Mamoru
    Sokol, Janusz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 2367 - 2378
  • [28] On the order of strong starlikeness and the radii of starlikeness for of some close-to-convex functions
    Mamoru Nunokawa
    Janusz Sokół
    Analysis and Mathematical Physics, 2019, 9 : 2367 - 2378
  • [29] Coefficient Bounds for Certain Analytic Functions
    Khatter, Kanika
    Lee, See Keong
    Kumar, S. Sivaprasad
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 455 - 490
  • [30] SECOND HANKEL DETERMINAT FOR CERTAIN ANALYTIC FUNCTIONS SATISFYING SUBORDINATE CONDITION
    Deniz, Erhan
    Budak, Levent
    MATHEMATICA SLOVACA, 2018, 68 (02) : 463 - 471