A framework for short-term traffic flow forecasting using the combination of wavelet transformation and artificial neural networks

被引:30
|
作者
Kashi, Seyed Omid Mousavizadeh [1 ]
Akbarzadeh, Meisam [1 ]
机构
[1] Isfahan Univ Technol, Dept Transportat Engn, Esfahan 8415683111, Iran
关键词
Artificial neural network; forecasting; traffic flow; wavelet transformation; TIME-SERIES; MODEL; PREDICTION; SYSTEM;
D O I
10.1080/15472450.2018.1493929
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The main objective of this paper is to develop a framework for short-term traffic flow forecasting models with high accuracy. Due to flow oscillations, the real-time information presented to the drivers through variable message signs, etc., may not be valid by the time the driver reaches the location. On the other hand, not all compartments of the flow signal are of same importance in determining its future state. A model is developed to predict the value of traffic flow in near future (next 5-35minutes) based on the combination of wavelet transformation and artificial neural networks. This model is called the hybrid WT-ANN. Wavelet transformation is set to denoise the flow signal, i.e., filtering the unimportant fluctuations of the flow signal. Unimportant fluctuations are those that have little or no effect on the future condition of the signal. The neural network is set and trained to use previous data for predicting future flow. To implement the system, traffic data of US-101 were used from Next Generation Simulation (NGSIM). Results show that removing the noises has improved the accuracy of the prediction to a great extent. The model was used to predict the flow in three different locations on the same highway and a different highway in a different country. The model rendered highly reliable predictions. The proposed model predicts the flow of next 5min on the same location with 2.5% Mean Absolute Percentage Error (MAPE) and of next 35min with less than 12% MAPE. It predicts the flow on downstream locations for next 5min with less than 8% MAPE and for the different highway with 2.3% MAPE.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 50 条
  • [21] Analysis and Short-Term Forecasting of Highway Traffic Flow in Slovenia
    Potocnik, Primoz
    Govekar, Edvard
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT I, 2011, 6593 : 270 - 279
  • [22] Short-Term Forecasting of Electricity Consumption Using Artificial Neural Networks - an Overview
    Baric, Ivan
    Grbic, Ratko
    Nyarko, Emmanuel Karlo
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1076 - 1081
  • [23] Short-term electric load forecasting in Tunisia using artificial neural networks
    Rim Houimli
    Mourad Zmami
    Ousama Ben-Salha
    Energy Systems, 2020, 11 : 357 - 375
  • [24] Use of Fuzzy Neural Networks for a Short Term Forecasting of Traffic Flow Performance
    Dmitry, Skorobogatchenko
    Sergey, Viselskiy
    CREATIVITY IN INTELLIGENT TECHNOLOGIES AND DATA SCIENCE, PT 1, 2019, 1083 : 392 - 405
  • [25] Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    Wei, Yu
    Chen, Mu-Chen
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2012, 21 (01) : 148 - 162
  • [26] Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction
    Deihimi, Ali
    Orang, Omid
    Showkati, Hemen
    ENERGY, 2013, 57 : 382 - 401
  • [27] Short-term solar radiation forecasting using a new seasonal clustering technique and artificial neural network
    Ali-Ou-Salah, Hamza
    Oukarfi, Benyounes
    Mouhaydine, Tlemcani
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022, 19 (04) : 424 - 434
  • [28] Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique
    Ali, Yousef
    Aly, Hamed H.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [29] Short-term forecasting of soil temperature using artificial neural network
    Tabari, Hossein
    Talaee, P. Hosseinzadeh
    Willems, Patrick
    METEOROLOGICAL APPLICATIONS, 2015, 22 (03) : 576 - 585
  • [30] Short-term inflow forecasting using an artificial neural network model
    Xu, ZX
    Li, JY
    HYDROLOGICAL PROCESSES, 2002, 16 (12) : 2423 - 2439