A STOCHASTIC GALERKIN METHOD FOR HAMILTON-JACOBI EQUATIONS WITH UNCERTAINTY

被引:21
|
作者
Hu, Jingwei [1 ]
Jin, Shi [2 ,3 ,4 ,5 ]
Xiu, Dongbin [6 ,7 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Shanghai Jiao Tong Univ, Dept Math, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R China
[6] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[7] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 05期
基金
美国国家科学基金会;
关键词
uncertainty quantification; Hamilton-Jacobi equations; random input; relaxation schemes; generalized polynomial chaos; GENERALIZED POLYNOMIAL CHAOS; CONSERVATION-LAWS; VISCOSITY SOLUTIONS; PROPAGATION; QUANTIFICATION; SCHEMES; SYSTEMS; BOUNDS;
D O I
10.1137/140990930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a class of stochastic numerical schemes for Hamilton-Jacobi equations with random inputs in initial data and/or the Hamiltonians. Since the gradient of the Hamilton-Jacobi equations gives a symmetric hyperbolic system, we utilize the generalized polynomial chaos (gPC) expansion with stochastic Galerkin procedure in random space and the Jin-Xin relaxation approximation in physical space for shock capturing. We provide an error estimate for the gPC stochastic Galerkin approximation to smooth solutions, and show that our numerical formulation preserves the symmetry and hyperbolicity of the underlying system, which allows one to efficiently quantify the uncertainty of the Hamilton-Jacobi equations due to random inputs, as demonstrated by the numerical examples.
引用
收藏
页码:A2246 / A2269
页数:24
相关论文
共 50 条