A parameter choice strategy for a multilevel augmentation method in iterated Lavrentiev regularization

被引:2
作者
Zeng, Chunmei [1 ]
Luo, Xingjun [1 ]
Yang, Suhua [1 ]
Li, Fanchun [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Jiangxi Vocat Coll Appl Technol, Dept Elect Informat Engn, Ganzhou 341000, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2018年 / 26卷 / 02期
关键词
Ill-posed integral equations; multilevel augmentation methods; a parameter choice strategy; iterated Lavrentiev regularization; ILL-POSED PROBLEMS; INTEGRAL-EQUATIONS; OPERATOR-EQUATIONS; DISCRETIZATION; PROJECTION; ORDER; KIND;
D O I
10.1515/jiip-2017-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
[41]   A parameter choice strategy for the regularized approximation of Fredholm integral equations of the first kind [J].
Rajan, M. P. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (11) :2612-2622
[42]   Empirical risk minimization as parameter choice rule for general linear regularization methods [J].
Li, Housen ;
Werner, Frank .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01) :405-427
[43]   A class of parameter choice strategies for the finite dimensional weighted Tikhonov regularization scheme [J].
G. D. Reddy ;
D. Pradeep .
Computational and Applied Mathematics, 2023, 42
[44]   On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator [J].
Raus, Toomas ;
Hamarik, Uno .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) :221-233
[45]   A class of a posteriori parameter choice rules for filter-based regularization schemes [J].
Sayana, K. J. ;
Reddy, G. D. .
NUMERICAL ALGORITHMS, 2025, 98 (02) :767-795
[46]   Wavelet multilevel augmentation method for linear boundary value problems [J].
Utudee, Somlak ;
Maleewong, Montri .
Advances in Difference Equations, 2015, :1-14
[47]   The Galerkin scheme for Lavrentiev’sm-times iterated method to solve linear accretive Volterra integral equations of the first kind [J].
Robert Plato .
BIT Numerical Mathematics, 1997, 37 :404-423
[48]   A FAST MULTISCALE GALERKIN METHOD FOR SOLVING ILL-POSED INTEGRAL EQUATIONS VIA LAVRENTIEV REGULARIZATION1 [J].
Luo, Xing-Jun ;
Li, Fan-Chun ;
Yang, Su-Hua .
BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, :338-348
[49]   A linear regularization method for a parameter identification problem in heat equation [J].
Mondal, Subhankar ;
Nair, M. Thamban .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02) :251-273
[50]   A New Method for Determining the Tikhonov Regularization Parameter of Load Identification [J].
Gao, Wei ;
Yu, Kaiping .
NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446