A parameter choice strategy for a multilevel augmentation method in iterated Lavrentiev regularization

被引:2
作者
Zeng, Chunmei [1 ]
Luo, Xingjun [1 ]
Yang, Suhua [1 ]
Li, Fanchun [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Jiangxi Vocat Coll Appl Technol, Dept Elect Informat Engn, Ganzhou 341000, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2018年 / 26卷 / 02期
关键词
Ill-posed integral equations; multilevel augmentation methods; a parameter choice strategy; iterated Lavrentiev regularization; ILL-POSED PROBLEMS; INTEGRAL-EQUATIONS; OPERATOR-EQUATIONS; DISCRETIZATION; PROJECTION; ORDER; KIND;
D O I
10.1515/jiip-2017-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [31] WAVELET COLLOCATION METHOD AND MULTILEVEL AUGMENTATION METHOD FOR HAMMERSTEIN EQUATIONS
    Kaneko, Hideaki
    Neamprem, Khomsan
    Novaprateep, Boriboon
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) : A309 - A338
  • [32] On the monotone error rule for parameter choice in iterative and continuous regularization methods
    Hämarik, U
    Tautenhahn, U
    [J]. BIT, 2001, 41 (05): : 1029 - 1038
  • [33] Optimal parameter choice rule for filter-based regularization schemes
    Sayana, K. J.
    Reddy, G. D.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 481
  • [34] Heuristic Parameter Choice Rules for Tikhonov Regularization with Weakly Bounded Noise
    Kindermann, Stefan
    Raik, Kemal
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (12) : 1373 - 1394
  • [35] Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems
    Kaltenbacher, Barbara
    Kirchner, Alana
    Vexler, Boris
    [J]. INVERSE PROBLEMS, 2011, 27 (12)
  • [36] On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods
    U. Hämarik
    U. Tautenhahn
    [J]. BIT Numerical Mathematics, 2001, 41 : 1029 - 1038
  • [37] An inexact Newton regularization in Banach spaces based on the nonstationary iterated Tikhonov method
    Margotti, Fabio
    Rieder, Andreas
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (04): : 373 - 392
  • [38] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    [J]. JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [39] A New Method for TSVD Regularization Truncated Parameter Selection
    Wu, Zemin
    Bian, Shaofeng
    Xiang, Caibing
    Tong, Yude
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [40] A linear regularization method for a nonlinear parameter identification problem
    Nair, M. Thamban
    Das Roy, Samprita
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (06): : 687 - 701