A parameter choice strategy for a multilevel augmentation method in iterated Lavrentiev regularization

被引:2
作者
Zeng, Chunmei [1 ]
Luo, Xingjun [1 ]
Yang, Suhua [1 ]
Li, Fanchun [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Jiangxi Vocat Coll Appl Technol, Dept Elect Informat Engn, Ganzhou 341000, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2018年 / 26卷 / 02期
关键词
Ill-posed integral equations; multilevel augmentation methods; a parameter choice strategy; iterated Lavrentiev regularization; ILL-POSED PROBLEMS; INTEGRAL-EQUATIONS; OPERATOR-EQUATIONS; DISCRETIZATION; PROJECTION; ORDER; KIND;
D O I
10.1515/jiip-2017-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [21] The parameter choice rules for weighted Tikhonov regularization scheme
    Reddy, G. D.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) : 2039 - 2052
  • [22] The parameter choice rules for weighted Tikhonov regularization scheme
    G. D. Reddy
    Computational and Applied Mathematics, 2018, 37 : 2039 - 2052
  • [23] A class of parameter choice strategies for the finite dimensional weighted Tikhonov regularization scheme
    Reddy, G. D.
    Pradeep, D.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
  • [24] ON THE CONVERGENCE OF A HEURISTIC PARAMETER CHOICE RULE FOR TIKHONOV REGULARIZATION
    Gockenbach, Mark S.
    Gorgin, Elaheh
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04) : A2694 - A2719
  • [25] Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method
    Chamorro-Servent, Judit
    Dubois, Remi
    Potse, Mark
    Coudiere, Yves
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 289 - 300
  • [26] χ2 TESTS FOR THE CHOICE OF THE REGULARIZATION PARAMETER IN NONLINEAR INVERSE PROBLEMS
    Mead, J. L.
    Hammerquist, C. C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (03) : 1213 - 1230
  • [27] Parameter choice in Banach space regularization under variational inequalities
    Hofmann, Bernd
    Mathe, Peter
    INVERSE PROBLEMS, 2012, 28 (10)
  • [28] CONVERGENCE OF HEURISTIC PARAMETER CHOICE RULES FOR CONVEX TIKHONOV REGULARIZATION
    Kindermann, Stefan
    Raik, Kemal
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1773 - 1800
  • [29] A parameter choice rule for Tikhonov regularization based on predictive risk
    Benvenuto, Federico
    Jin, Bangti
    INVERSE PROBLEMS, 2020, 36 (06)
  • [30] Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging
    Chamorro-Servent, Judit
    Dubois, Remi
    Coudiere, Yves
    FRONTIERS IN PHYSIOLOGY, 2019, 10