A parameter choice strategy for a multilevel augmentation method in iterated Lavrentiev regularization

被引:2
|
作者
Zeng, Chunmei [1 ]
Luo, Xingjun [1 ]
Yang, Suhua [1 ]
Li, Fanchun [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Jiangxi Vocat Coll Appl Technol, Dept Elect Informat Engn, Ganzhou 341000, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2018年 / 26卷 / 02期
关键词
Ill-posed integral equations; multilevel augmentation methods; a parameter choice strategy; iterated Lavrentiev regularization; ILL-POSED PROBLEMS; INTEGRAL-EQUATIONS; OPERATOR-EQUATIONS; DISCRETIZATION; PROJECTION; ORDER; KIND;
D O I
10.1515/jiip-2017-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 50 条
  • [1] An apriori parameter choice strategy and a fifth order iterative scheme for Lavrentiev regularization method
    George, Santhosh
    Saeed, M.
    Argyros, Ioannis K.
    Jidesh, P.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 1095 - 1115
  • [2] An apriori parameter choice strategy and a fifth order iterative scheme for Lavrentiev regularization method
    Santhosh George
    M. Saeed
    Ioannis K. Argyros
    P. Jidesh
    Journal of Applied Mathematics and Computing, 2023, 69 : 1095 - 1115
  • [3] A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations
    George, Santhosh
    Padikkal, Jidesh
    Remesh, Krishnendu
    Argyros, Ioannis K.
    MATHEMATICS, 2022, 10 (18)
  • [4] On the Parameter Choice in the Multilevel Augmentation Method
    Yang, Suhua
    Luo, Xingjun
    Zeng, Chunmei
    Xu, Zhihai
    Hu, Wenyu
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (03) : 555 - 571
  • [5] New Rule for Choice of the Regularization Parameter in (Iterated) Tikhonov Method
    Raus, T.
    Hamarik, U.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (02) : 187 - 198
  • [6] On Numerical Realization of Quasioptimal Parameter Choices in (iterated) Tikhonov and Lavrentiev Regularization
    Raus, T.
    Hamarik, U.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (01) : 99 - 108
  • [7] A Convergence Analysis of the Iterated Lavrentiev Regularization Method under a Lipschitz Condition
    Mahale, Pallavi
    Singh, Ankit
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (02) : 181 - 220
  • [8] A family of rules for the choice of the regularization parameter in the Lavrentiev method in the case of rough estimate of the noise level of the data
    Haemarik, Uno
    Palm, Reimo
    Raus, Toomas
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (5-6): : 831 - 854
  • [10] An iterative Lavrentiev regularization method
    Morigi, S.
    Reichel, L.
    Sgallari, F.
    BIT NUMERICAL MATHEMATICS, 2006, 46 (03) : 589 - 606