Smallest eigenvalues of Hankel matrices for exponential weights

被引:21
作者
Chen, Y
Lubinsky, DS [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
D O I
10.1016/j.jmaa.2004.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the rate of decay of the smallest eigenvalue of the Hankel matrices [GRAPHICS] for a general class of even exponential weights W-2 = exp(-2Q) on an interval I. More precise asymptotics for more special weights have been obtained by many authors. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:476 / 495
页数:20
相关论文
共 13 条
[1]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[2]  
Beckermann B, 2000, NUMER MATH, V85, P553, DOI 10.1007/s002110000145
[3]  
Berg C, 2002, MATH SCAND, V91, P67
[4]   Small eigenvalues of large Hankel matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42) :7305-7315
[5]  
Garnett J.B., 1981, BOUNDED ANAL FUNCTIO
[6]  
KOOSIS P, 1998, INTRO HP SPACES
[7]  
Levin Eli, 2001, Orthogonal Polynomials for Exponential Weights
[8]   Best approximation and interpolation of (1+(ax)2)-1 and its transforms [J].
Lubinsky, DS .
JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) :106-115
[9]   WHERE DOES THE SUP NORM OF A WEIGHTED POLYNOMIAL LIVE - (A GENERALIZATION OF INCOMPLETE POLYNOMIALS) [J].
MHASKAR, HN ;
SAFF, EB .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (01) :71-91
[10]  
Saff E. B., 1997, LOGARITHMIC POTENTIA