Time-Optimal Path Following for Fixed-Wing Aircraft

被引:13
作者
Zhao, Yiming [1 ]
Tsiotras, Panagiotis [2 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Georgia Inst Technol, Coll Engn, Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家航空航天局;
关键词
TRAJECTORY OPTIMIZATION; ROBOTIC MANIPULATORS; SPECIFIED PATHS; CONSTRAINTS;
D O I
10.2514/1.57471
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, a method is proposed for the minimum-time travel of a fixed-wing aircraft along a prescribed geometric path. The method checks the feasibility of the path, namely, whether it is possible for the aircraft to travel along the path without violating the state or control constraints. If the path is feasible, the method subsequently finds a semi-analytical solution of the speed profile that minimizes the travel time along the path. The optimal speed profile is then used to time parameterize the path and generate the state trajectory along with the control histories via inverse dynamics. Two algorithms for the time-optimal parameterization are proposed. Numerical examples are presented to demonstrate the validity, numerical accuracy, and optimality of the proposed method.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 50 条
[41]   On Time-Optimal Control of Elastic Joints under Input Constraints [J].
Keppler, Manuel ;
De Luca, Alessandro .
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, :4149-4156
[42]   Time-optimal Coordination of Mobile Robots along Specified Paths [J].
Altche, Florent ;
Qian, Xiangjun ;
de La Fortelle, Arnaud .
2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, :5020-5026
[43]   Iterative Learning of Feasible Time-optimal Trajectories for Robot Manipulators [J].
Steinhauser, Armin ;
Swevers, Jan .
IFAC PAPERSONLINE, 2017, 50 (01) :12095-12100
[44]   On Smooth Time-Optimal Trajectory Planning in Twisted String Actuators [J].
Nedelchev, Simeon ;
Kirsanov, Daniil ;
Gaponov, Igor ;
Seong, Hyeonseok ;
Ryu, Jee-Hwan .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :10107-10113
[45]   A VELOCITY SELF-LEARNING ALGORITHM FOR TIME-OPTIMAL TRAJECTORY PLANNING ALONG FULLY SPECIFIED PATH-Part II [J].
Nan, Wenhu ;
Qin, Haojun .
REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2025, 70 (02) :241-246
[46]   Time-optimal velocity planning by a bound-tightening technique [J].
Cabassi, Federico ;
Consolini, Luca ;
Locatelli, Marco .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (01) :61-90
[47]   Time-Optimal Path Tracking for Dual-Arm Free-Floating Space Manipulator System Using Convex Programming [J].
An, Quan ;
Zhang, Yao ;
Hu, Quan ;
Li, Mou ;
Li, Jinjian ;
Mao, Anyuan .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (05) :6670-6682
[48]   A VELOCITY SELF-LEARNING ALGORITHM FOR TIME-OPTIMAL TRAJECTORY PLANNING ALONG THE FULLY SPECIFIED PATH-PART I [J].
Nan, Wenhu ;
Qin, Haojun .
REVUE ROUMAINE DES SCIENCES TECHNIQUES-SERIE ELECTROTECHNIQUE ET ENERGETIQUE, 2025, 70 (01) :109-114
[49]   Real-Time Acceleration-Continuous Path-Constrained Trajectory Planning With Built-In Tradeoff Between Cruise and Time-Optimal Motions [J].
Shen, Peiyao ;
Zhang, Xuebo ;
Fang, Yongchun ;
Yuan, Mingxing .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) :1911-1924
[50]   Guided Time-Optimal Model Predictive Control of a Multi-Rotor [J].
Zhang, Guangyu ;
Zheng, Yongjie ;
He, Yuqing ;
Yang, Liying ;
Nie, Hongyu ;
Huang, Chaoxiong ;
Zhao, Yiwen .
IEEE CONTROL SYSTEMS LETTERS, 2023, 7 :1658-1663