Counting algebraic numbers with large height I

被引:18
作者
Masser, David [1 ]
Vaaler, Jeffrey D. [2 ]
机构
[1] Univ Basel, Math Inst, Rheinsprung 21, CH-4051 Basel, Switzerland
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT | 2008年 / 16卷
基金
美国国家科学基金会;
关键词
Mahler measure; height;
D O I
10.1007/978-3-211-74280-8_14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:237 / +
页数:2
相关论文
共 13 条
[1]  
[Anonymous], B SOC MATH FRANCE
[2]  
Chern SJ, 2001, J REINE ANGEW MATH, V540, P1
[3]  
Dubickas A, 1998, ACTA ARITH, V86, P325
[4]  
Kronecker L., 1857, J REINE ANGEW MATH, V53, P173, DOI DOI 10.1515/CRLL.1857.53.173
[5]  
Lang S., 1983, Fundamentals of Diophantine Geometry, DOI [DOI 10.1007/978-1-4757-1810-2, 10.1007/978-1-4757-1810-2]
[6]  
LOHER T, 2001, THESIS U BASEL BASEL
[7]   Counting algebraic numbers with large height II [J].
Masser, David ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :427-445
[8]  
NORTHCOTT DG, 1949, P CAMB PHILOS SOC, V45, P510
[9]  
NORTHCOTT DG, 1949, P CAMB PHILOS SOC, V45, P502
[10]  
SCHANUEL SH, 1979, B SOC MATH FR, V107, P433