Generation of 3D Brain MRI Using Auto-Encoding Generative Adversarial Networks

被引:73
作者
Kwon, Gihyun [1 ]
Han, Chihye [1 ]
Kim, Dae-shik [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III | 2019年 / 11766卷
基金
新加坡国家研究基金会;
关键词
Generative Adversarial Networks; MRI; Data augmentation; 3D; Image synthesis;
D O I
10.1007/978-3-030-32248-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As deep learning is showing unprecedented success in medical image analysis tasks, the lack of sufficient medical data is emerging as a critical problem. While recent attempts to solve the limited data problem using Generative Adversarial Networks (GAN) have been successful in generating realistic images with diversity, most of them are based on image-to-image translation and thus require extensive datasets from different domains. Here, we propose a novel model that can successfully generate 3D brain MRI data from random vectors by learning the data distribution. Our 3D GAN model solves both image blurriness and mode collapse problems by leveraging alpha-GAN that combines the advantages of Variational Auto-Encoder (VAE) and GAN with an additional code discriminator network. We also use the Wasserstein GAN with Gradient Penalty (WGAN-GP) loss to lower the training instability. To demonstrate the effectiveness of our model, we generate new images of normal brain MRI and show that our model outperforms baseline models in both quantitative and qualitative measurements. We also train the model to synthesize brain disorder MRI data to demonstrate the wide applicability of our model. Our results suggest that the proposed model can successfully generate various types and modalities of 3D whole brain volumes from a small set of training data.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 18 条
[1]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]   Learning Implicit Brain MRI Manifolds with Deep Learning [J].
Bermudez, Camilo ;
Plassard, Andrew J. ;
Davis, Larry T. ;
Newton, Allen T. ;
Resnick, Susan M. ;
Landman, Bennett A. .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[4]  
Dar S.U., 2019, IEEE T MED IMAGING, V1
[5]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[6]  
Gretton A, 2012, J MACH LEARN RES, V13, P723
[7]  
Gulrajani I., 2017, Advances in neural information processing systems, P5769, DOI [10.5555/3295222.3295327, DOI 10.5555/3295222.3295327]
[8]  
Han C, 2018, I S BIOMED IMAGING, P734, DOI 10.1109/ISBI.2018.8363678
[9]  
Kingma DP, 2014, ARXIV
[10]   A large, open source dataset of stroke anatomical brain images and manual lesion segmentations [J].
Liew, Sook-Lei ;
Anglin, Julia M. ;
Banks, Nick W. ;
Sondag, Matt ;
Ito, Kaori L. ;
Kim, Hosung ;
Chan, Jennifer ;
Ito, Joyce ;
Jung, Connie ;
Khoshab, Nima ;
Lefebvre, Stephanie ;
Nakamura, William ;
Saldana, David ;
Schmiesing, Allie ;
Tran, Cathy ;
Vo, Danny ;
Ard, Tyler ;
Heydari, Panthea ;
Kim, Bokkyu ;
Aziz-Zadeh, Lisa ;
Cramer, Steven C. ;
Liu, Jingchun ;
Soekadar, Surjo ;
Nordvik, Jan-Egil ;
Westlye, Lars T. ;
Wang, Junping ;
Winstein, Carolee ;
Yu, Chunshui ;
Ai, Lei ;
Koo, Bonhwang ;
Craddock, R. Cameron ;
Milham, Michael ;
Lakich, Matthew ;
Pienta, Amy ;
Stroud, Alison .
SCIENTIFIC DATA, 2018, 5