Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices

被引:166
|
作者
Bai, Zhong-Zhi [1 ]
Golub, Gene H.
Li, Chi-Kwong
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Comp Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Stanford Univ, Dept Comp Sci, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
non-Hermitian matrix; Hermitian matrix; skew-Hermitian matrix; splitting iteration method; optimal iteration parameter;
D O I
10.1137/050623644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal parameter of the Hermitian/skew-Hermitian splitting (HSS) iteration method for a real two-by-two linear system is obtained. The result is used to determine the optimal parameters for linear systems associated with certain two-by-two block matrices and to estimate the optimal parameters of the HSS iteration method for linear systems with n-by-n real coefficient matrices. Numerical examples are given to illustrate the results.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 32 条
  • [31] A GENERALIZED TWO-SWEEP SHIFT SPLITTING METHOD FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS
    Wu, Shi-Liang
    Li, Cui-Xia
    GLASNIK MATEMATICKI, 2022, 57 (01) : 149 - 159
  • [32] A Variant Modified Skew-Normal Splitting Iterative Method for Non-Hermitian Positive Definite Linear Systems
    Li, Rui
    Yin, Jun-Feng
    Li, Zhi-Lin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (02): : 510 - 529