Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices

被引:166
|
作者
Bai, Zhong-Zhi [1 ]
Golub, Gene H.
Li, Chi-Kwong
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Comp Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Stanford Univ, Dept Comp Sci, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 28卷 / 02期
关键词
non-Hermitian matrix; Hermitian matrix; skew-Hermitian matrix; splitting iteration method; optimal iteration parameter;
D O I
10.1137/050623644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal parameter of the Hermitian/skew-Hermitian splitting (HSS) iteration method for a real two-by-two linear system is obtained. The result is used to determine the optimal parameters for linear systems associated with certain two-by-two block matrices and to estimate the optimal parameters of the HSS iteration method for linear systems with n-by-n real coefficient matrices. Numerical examples are given to illustrate the results.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 32 条
  • [1] On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations
    Bai, Zhong-Zhi
    Golub, Gene H.
    Ng, Michael K.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) : 319 - 335
  • [2] A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN AND SKEW-HERMITIAN MATRICES
    Min, Chohong
    Lee, Soojoon
    Kim, Se-Goo
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2011, 18 (03): : 185 - 199
  • [3] Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices
    Bai, Zhong-Zhi
    Golub, Gene H.
    Li, Chi-Kwong
    MATHEMATICS OF COMPUTATION, 2006, 76 (257) : 287 - 298
  • [4] Several matrix trace inequalities on Hermitian and skew-Hermitian matrices
    Gao, Xiangyu
    Wang, Guoqiang
    Zhang, Xian
    Tan, Julong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] Geometry of skew-Hermitian matrices
    Huang, LP
    Wan, ZX
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 396 : 127 - 157
  • [6] Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems
    Wu, Shi-Liang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (02) : 338 - 356
  • [7] Several matrix trace inequalities on Hermitian and skew-Hermitian matrices
    Xiangyu Gao
    Guoqiang Wang
    Xian Zhang
    Julong Tan
    Journal of Inequalities and Applications, 2014
  • [8] Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems
    Bai, ZZ
    Golub, GH
    Ng, MK
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) : 603 - 626
  • [9] Improved convergence theorems for new Hermitian and skew-Hermitian splitting methods
    Li, Cui-Xia
    Wu, Shi-Liang
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 510 - 513
  • [10] On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems
    Bai, Zhong-Zhi
    Golub, Gene H.
    Ng, Michael K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (2-3) : 413 - 440