Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices

被引:167
作者
Bai, Zhong-Zhi [1 ]
Golub, Gene H.
Li, Chi-Kwong
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Comp Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Stanford Univ, Dept Comp Sci, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
non-Hermitian matrix; Hermitian matrix; skew-Hermitian matrix; splitting iteration method; optimal iteration parameter;
D O I
10.1137/050623644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal parameter of the Hermitian/skew-Hermitian splitting (HSS) iteration method for a real two-by-two linear system is obtained. The result is used to determine the optimal parameters for linear systems associated with certain two-by-two block matrices and to estimate the optimal parameters of the HSS iteration method for linear systems with n-by-n real coefficient matrices. Numerical examples are given to illustrate the results.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 20 条
[1]   Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Lu, LZ ;
Yin, JF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :844-863
[2]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[3]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[4]  
BAI ZZ, 2002, SCCM0206 STANF U
[5]   Preconditioned iterative methods for weighted Toeplitz least squares problems [J].
Benzi, M ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) :1106-1124
[6]   A preconditioner for generalized saddle point problems [J].
Benzi, M ;
Golub, GH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :20-41
[7]   Optimization of the hermitian and skew-Hermitian splitting iteration for saddle-point problems [J].
Benzi, M ;
Gander, MJ ;
Golub, GH .
BIT, 2003, 43 (05) :881-900
[8]  
Bertaccini D, 2005, NUMER MATH, V99, P441, DOI [10.1007/s00211-004-0574-1, 10.1007/s00211 -004-0574-1]
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[10]   An iteration for indefinite systems and its application to the Navier-Stokes equations [J].
Golub, GH ;
Wathen, AJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) :530-539