On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions

被引:0
作者
Cuccagna, Scipio [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
SYMMETRY-BREAKING BIFURCATION; ASYMPTOTIC STABILITY; GROUND-STATES; STANDING WAVES; ENERGY SPACE; NLS; SCATTERING; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrodinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrodinger Equation (NLSE) with symmetric potential in [MW] do not persist in the comparable quintic NLSE.
引用
收藏
页码:2053 / 2083
页数:31
相关论文
共 50 条
[41]   RADIAL AND NON-RADIAL SOLUTIONS FOR A NONLINEAR SCHRODINGER EQUATION WITH A CONSTRAINT [J].
Yang, Jiaxuan ;
Li, Yongqing ;
Wang, Zhi-Qiang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, :225-237
[42]   LARGE GLOBAL SOLUTIONS FOR THE ENERGY-CRITICAL NONLINEAR SCHRODINGER EQUATION [J].
Bai, Ruobing ;
Shen, Jia ;
Wu, Yifei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) :4193-4218
[43]   On Scattering for the Quintic Defocusing Nonlinear Schrodinger Equation on R x T2 [J].
Hani, Zaher ;
Pausader, Benoit .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (09) :1466-1542
[44]   Sign-changing solutions for a modified nonlinear Schrodinger equation in RN [J].
Jing, Yongtao ;
Liu, Haidong .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
[45]   ON THE GLOBAL WELL-POSEDNESS FOR THE PERIODIC QUINTIC NONLINEAR SCHRO"\DINGER EQUATION [J].
Yu, Xueying ;
Yue, Haitian .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) :1851-1902
[46]   Instability of stationary solutions for double power nonlinear Schrodinger equations in one dimension [J].
Fukaya, Noriyoshi ;
Hayashi, Masayuki .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (01)
[47]   On multiplicity and concentration of solutions for a gauged nonlinear Schrodinger equation [J].
Zhang, Jian ;
Tang, Xianhua ;
Zhao, Fukun .
APPLICABLE ANALYSIS, 2020, 99 (12) :2001-2012
[48]   New solutions for perturbed chiral nonlinear Schrodinger equation [J].
Aly, E. S. ;
Abdelrahman, Mahmoud A. E. ;
Bourazza, S. ;
Ahmadini, Abdullah Ali H. ;
Msmali, Ahmed Hussein ;
Askar, Nadia A. .
AIMS MATHEMATICS, 2022, 7 (07) :12289-12302
[49]   Infinitely many solutions for a gauged nonlinear Schrodinger equation [J].
Zhang, Jian ;
Zhang, Wen ;
Xie, Xiaoliang .
APPLIED MATHEMATICS LETTERS, 2019, 88 :21-27
[50]   Localized nodal solutions for a critical nonlinear Schrodinger equation [J].
Chen, Shaowei ;
Liu, Jiaquan ;
Wang, Zhi-Qiang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) :594-640