On Instability for the Quintic Nonlinear Schrodinger Equation of Some Approximate Periodic Solutions

被引:0
作者
Cuccagna, Scipio [1 ]
Marzuola, Jeremy L. [2 ]
机构
[1] Univ Trieste, Dept Math & Geosci, I-34127 Trieste, Italy
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
SYMMETRY-BREAKING BIFURCATION; ASYMPTOTIC STABILITY; GROUND-STATES; STANDING WAVES; ENERGY SPACE; NLS; SCATTERING; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Fermi Golden Rule analysis developed in [CM], we prove asymptotic stability of asymmetric nonlinear bound states bifurcating from linear bound states for a quintic nonlinear Schrodinger operator with symmetric potential. This goes in the direction of proving that the approximate periodic solutions for the cubic Nonlinear Schrodinger Equation (NLSE) with symmetric potential in [MW] do not persist in the comparable quintic NLSE.
引用
收藏
页码:2053 / 2083
页数:31
相关论文
共 50 条
  • [31] On the Asymptotic Stability of -Soliton Solutions of the Defocusing Nonlinear Schrodinger Equation
    Cuccagna, Scipio
    Jenkins, Robert
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) : 921 - 969
  • [32] Long-time Instability and Unbounded Sobolev Orbits for Some Periodic Nonlinear Schrodinger Equations
    Hani, Zaher
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (03) : 929 - 964
  • [33] The Soliton Scattering of the Cubic-Quintic Nonlinear Schrodinger Equation on the External Potentials
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [34] Interaction of Solitons With Delta Potential In The Cubic-Quintic Nonlinear Schrodinger Equation
    Aklan, Nor Amirah Busul
    Umarov, Bakhram
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 93 - 96
  • [35] Orbital stability of numerical periodic nonlinear Schrodinger equation
    Borgna, Juan P.
    Rial, Diego F.
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (01) : 149 - 169
  • [36] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [37] SINGULAR SOLUTIONS OF THE BIHARMONIC NONLINEAR SCHRODINGER EQUATION
    Baruch, G.
    Fibich, G.
    Mandelbaum, E.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) : 3319 - 3341
  • [38] Exact solutions of the Schrodinger equation with a complex periodic potential
    Dong, Shi-Hai
    Sun, Guo-Hua
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (08) : 1684 - 1695
  • [39] Embedded eigenvalues and the nonlinear Schrodinger equation
    Asad, R.
    Simpson, G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [40] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrodinger equation
    Isom, Bradley
    Mantzavinos, Dionyssios
    Stefanov, Atanas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2289 - 2329