Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent

被引:603
作者
Li, Pengfei [1 ]
Roberts, Benjamin P. [1 ]
Chakravorty, Dhruva K. [1 ]
Merz, Kenneth M., Jr. [1 ]
机构
[1] Univ Florida, Gainesville, FL 32611 USA
基金
美国国家卫生研究院;
关键词
FREE-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS SIMULATIONS; HYDRATION FREE-ENERGY; GIBBS FREE-ENERGY; THERMODYNAMIC INTEGRATION; COMPUTER-SIMULATIONS; AQUEOUS-SOLUTIONS; IONIC HYDRATION; SOLVATION; PROTEINS;
D O I
10.1021/ct400146w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal ions play significant roles in biological systems. Accurate molecular dynamics (MD) simulations on these systems require a validated set of parameters. Although there are more detailed ways to model metal ions, the nonbonded model, which employs a 12-6 Lennard-Jones (LJ) term plus an electrostatic potential, is still widely used in MD simulations today due to its simple form. However, LJ parameters have limited transferability due to different combining rules, various water models, and diverse simulation methods. Recently, simulations employing a Particle Mesh Ewald (PME) treatment for long-range electrostatics have become more and more popular owing to their speed and accuracy. In the present work, we have systematically designed LJ parameters for 24 +2 metal (M(II)) cations to reproduce different experimental properties appropriate for the Lorentz-Berthelot combining rules and PME simulations. We began by testing the transferability of currently available M(II) ion LJ parameters. The results showed that there are differences between simulations employing Ewald summation with other simulation methods and that it was necessary to design new parameters specific for PME based simulations. Employing the thermodynamic integration (TI) method and performing periodic boundary MD simulations employing PME, allowed for a systematic investigation of the LJ parameter space. Hydration free energies (HFEs), the ion oxygen distance in the first solvation shell (IOD), and coordination numbers (CNs) were obtained for various combinations of the parameters of the LJ potential for four widely used water models (TIP3P, SPC/E, TIP4P, and TIP4P(EW)). Results showed that the three simulated properties were highly correlated. Meanwhile, M(II) ions with the same parameters in different water models produce remarkably different HFEs but similar structural properties. It is difficult to reproduce various experimental values simultaneously because the nonbonded model underestimates the interaction between the metal ions and water molecules at short-range. Moreover, the extent of underestimation increases successively for the TIP3P, SPC/E, TIP4PEw, and TIP4P water models. Nonetheless, we fitted a curve to describe the relationship between epsilon (the well depth) and radius (R-min/2) from experimental data on noble gases to facilitate the generation of the best possible compromise models. Hence, by targeting different experimental values, we developed three sets of parameters for M(II) cations for three different water models (TIP3P, SPC/E, and TIP4P(EW)). These parameters we feel represent the best possible compromise that can be achieved using the nonbonded model for the ions in combination with simple water models. From a computational uncertainty analysis we estimate that the uncertainty in our computed HFEs is on the order of +/- 1 kcal/mol. Further improvements will require more advanced nonbonded models likely with inclusion of polarization.
引用
收藏
页码:2733 / 2748
页数:16
相关论文
共 89 条
[1]   Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations [J].
Allner, Olof ;
Nilsson, Lennart ;
Villa, Alessandra .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (04) :1493-1502
[2]   Metal ions in biological catalysis: from enzyme databases to general principles [J].
Andreini, Claudia ;
Bertini, Ivano ;
Cavallaro, Gabriele ;
Holliday, Gemma L. ;
Thornton, Janet M. .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2008, 13 (08) :1205-1218
[3]  
[Anonymous], REFERENCE DATA ATOMS
[4]  
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021, DOI 10.1021/j100384a009
[5]  
AQVIST J, 1994, J PHYS CHEM-US, V98, P8253, DOI 10.1021/j100084a049
[6]   Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals [J].
Asthagiri, D ;
Pratt, LR ;
Paulaitis, ME ;
Rempe, SB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (04) :1285-1289
[7]   Empirical force fields for biologically active divalent metal cations in water [J].
Babu, CS ;
Lim, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (02) :691-699
[8]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[9]  
BERG JM, 1990, ANNU REV BIOPHYS BIO, V19, P405
[10]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648