Quantum reflection by Casimir-van der Waals potential tails

被引:136
|
作者
Friedrich, H [1 ]
Jacoby, G [1 ]
Meister, CG [1 ]
机构
[1] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevA.65.032902
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the reflectivity of Casimir-van der Waals potentials, which behave as -C-4/r(4) at large distances and as -C-3/r(3) at small distances. The overall behavior of the reflection amplitude R depends crucially on the parameter rho=root2MC(3)/((h) over bar rootC(4)) which determines the relative importance of the -1/r(3) and the -1/r(4) parts of the potential. Near threshold, E=(h) over bar (2)k(2)/(2M)-->0, the reflectivity is given by \R\similar toexp(-2bk), with b depending on rho and the shape of the potential at intermediate distances. In the limit of large energies, ln\R\ is proportional to -k(1/3) with a known constant of proportionality depending only on C-3. For small values of rho, the reflectivity behaves as for a homogeneous -1/r(3) potential in the whole range of energies and does not depend on C-4 or the shape of the potential beyond the -1/r(3) region. For moderate and large values of rho, the reflectivity depends on C-4 and on the potential shape. For sufficiently large values of rho, which are ubiquitous in realistic systems, there is a range of energies beyond the near-threshold region, where the reflectivity shows the high-energy behavior appropriate for a homogeneous -1/r(4) potential, i.e., ln\R\ is proportional to -rootk with a proportionality constant depending only on C-4. This conspicuous and model-independent signature of the Casimir effect is illustrated for the reflectivities of neon atoms scattered off a silicon surface, which were recently measured by Shimizu [Phys. Rev. Lett. 86, 987 (2001)].
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantum layertronics in van der Waals systems
    Cong, Xiao
    Wang, Yao
    ACTA PHYSICA SINICA, 2023, 72 (23)
  • [22] Quantum microscopy with van der Waals heterostructures
    A. J. Healey
    S. C. Scholten
    T. Yang
    J. A. Scott
    G. J. Abrahams
    I. O. Robertson
    X. F. Hou
    Y. F. Guo
    S. Rahman
    Y. Lu
    M. Kianinia
    I. Aharonovich
    J.-P. Tetienne
    Nature Physics, 2023, 19 : 87 - 91
  • [23] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +
  • [24] The retarded van der Waals potential: Revisited
    Miyao, Tadahiro
    Spohn, Herbert
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [25] The van der Waals potential of mercury dimer
    Qiao, L. W.
    Li, P.
    Tang, K. T.
    CHEMICAL PHYSICS LETTERS, 2012, 532 : 19 - 21
  • [26] The van der Waals potential of the magnesium dimer
    Li, P.
    Xie, W.
    Tang, K. T.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (08):
  • [27] The effects of Casimir, van der Waals and electrostatic forces on the response of nanosensor beams
    Koc, Mehmet Akif
    Esen, Ismail
    Eroglu, Mustafa
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 297 - 320
  • [28] Casimir and van der Waals energy of anisotropic atomically thin metallic films
    Klimchitskaya, G. L.
    Mostepanenko, V. M.
    PHYSICAL REVIEW B, 2015, 92 (20)
  • [29] Measuring the Dispersion Forces Near the van der Waals-Casimir Transition
    Svetovoy, V. B.
    Postnikov, A., V
    Uvarov, I., V
    Stepanov, F., I
    Palasantzas, G.
    PHYSICAL REVIEW APPLIED, 2020, 13 (06)
  • [30] Identity of the van der Waals force and the Casimir effect and the irrelevance of these phenomena to sonoluminescence
    Brevik, V
    Marachevsky, VN
    Milton, KA
    PHYSICAL REVIEW LETTERS, 1999, 82 (20) : 3948 - 3951