Distinct gene signatures predict insulin resistance in young mice with high fat diet-induced obesity

被引:7
作者
Chen, Katherine [1 ]
Jih, Alice [1 ]
Osborn, Olivia [2 ]
Kavaler, Sarah T. [1 ]
Fu, Wenxian [1 ]
Sasik, Roman [2 ]
Saito, Rintaro [2 ]
Kim, Jane J. [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[3] Rady Childrens Hosp San Diego, San Diego, CA USA
关键词
gene expression; obesity; insulin resistance; transcriptome; visceral adipose tissue; WHITE ADIPOSE-TISSUE; EXPRESSION; MODELS; ALPHA(1)-ANTITRYPSIN; CYTOSCAPE; WEIGHT;
D O I
10.1152/physiolgenomics.00045.2017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Highly inbred C57BL/6 mice show wide variation in their degree of insulin resistance in response to diet-induced obesity even though they are almost genetically identical. Here we employed transcriptional profiling by RNA sequencing (RNA-Seq) of visceral adipose tissue (VAT) and liver in young mice to determine how gene expression patterns correlate with the later development of high-fat diet (HFD)-induced insulin resistance in adulthood. To accomplish this goal, we partially removed and banked tissues from pubertal mice. Mice subsequently received HFD followed by metabolic phenotyping to identify two well-defined groups of mice with either severe or mild insulin resistance. The remaining tissues were collected at study termination. We then applied RNA-Seq to generate transcriptome profiles associated with worsened insulin resistance before and after the initiation of HFD. We found 244 up- and 109 downregulated genes in VAT of the most insulin-resistant mice even before HFD exposure. Downregulated genes included serine protease inhibitor, major urinary protein, and complement genes; upregulated genes represented mostly muscle constituents. These gene families were also differentially expressed in VAT of mice with high or low insulin resistance after HFD. Inflammatory genes predicted insulin resistance in liver, but not in VAT. In contrast, when we compared VAT of all mice before and after HFD, differentially expressed genes were predominantly composed of immune response genes. These data show a distinct set of gene transcripts in young mice correlates with the severity of insulin resistance in adulthood, providing insight into the pathogenesis of insulin resistance in early life.
引用
收藏
页码:144 / 157
页数:14
相关论文
共 50 条
  • [1] Vimentin Deficiency Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Kim, SeoYeon
    Kim, Inyeong
    Cho, Wonkyoung
    Oh, Goo Taeg
    Park, Young Mi
    DIABETES & METABOLISM JOURNAL, 2021, 45 (01) : 97 - +
  • [2] Sicyos angulatus Prevents High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Choi, Ji Hyun
    Noh, Jung-Ran
    Kim, Yong-Hoon
    Kim, Jae-Hoon
    Kang, Eun-Jung
    Choi, Dong-Hee
    Choi, Jung Hyeon
    An, Jin-Pyo
    Oh, Won-Keun
    Lee, Chul-Ho
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2020, 17 (06): : 787 - 798
  • [3] Protocatechuic Acid Ameliorates High Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Xiang, Yuyao
    Huang, Ruolan
    Wang, Yongliang
    Han, Shanshan
    Qin, Xiaochen
    Li, Zhenzhen
    Wang, Xu
    Han, Yuqing
    Wang, Tao
    Xia, Bo
    Wu, Jiangwei
    Yang, Gongshe
    MOLECULAR NUTRITION & FOOD RESEARCH, 2023, 67 (03)
  • [4] Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice
    Lee, Young-Sil
    Cha, Byung-Yoon
    Choi, Sun-Sil
    Choi, Bong-Keun
    Yonezawa, Takayuki
    Teruya, Toshiaki
    Nagai, Kazuo
    Woo, Je-Tae
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2013, 24 (01) : 156 - 162
  • [5] Effects of the pesticide deltamethrin on high fat diet-induced obesity and insulin resistance in male mice
    Tsakiridis, Evangelia E.
    Morrow, Marisa R.
    Desjardins, Eric M.
    Wang, Dongdong
    Llanos, Andrea
    Wang, Bo
    Wade, Michael G.
    Morrison, Katherine M.
    Holloway, Alison C.
    Steinberg, Gregory R.
    FOOD AND CHEMICAL TOXICOLOGY, 2023, 176
  • [6] The role of PPARγ in high-fat diet-induced obesity and insulin resistance
    Kadowaki, T
    Hara, K
    Kubota, N
    Tobe, K
    Terauchi, Y
    Yamauchi, T
    Eto, K
    Kadowaki, H
    Noda, M
    Hagura, R
    Akanuma, Y
    JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2002, 16 (01) : 41 - 45
  • [7] ADAR1 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice
    Cui, Xiao-Bing
    Fei, Jia
    Chen, Sisi
    Edwards, Gaylen L.
    Chen, Shi-You
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2021, 320 (01): : E131 - E138
  • [8] Role of Oxidative Stress on Insulin Resistance in Diet-Induced Obesity Mice
    Pieri, Bruno Luiz da Silva
    Rodrigues, Matheus Scarpatto
    Farias, Hemelin Resende
    Silveira, Gustavo de Bem
    Ribeiro, Victoria de Souza Gomes da Cunha
    Silveira, Paulo Cesar Lock
    De Souza, Claudio Teodoro
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [9] Model of high-fat diet-induced obesity associated to insulin resistance and glucose intolerance
    White, Pollyanna A. S.
    Cercato, Luana M.
    Araujo, Jessica M. D.
    Souza, Lucas A.
    Soares, Andrea F.
    Barbosa, Ana Paula O.
    Neto, Jose M. de R.
    Marcal, Anderson C.
    Machado, Ubiratan F.
    Camargo, Enilton A.
    Santos, Marcio R. V.
    Brito, Luciana C.
    ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA, 2013, 57 (05) : 339 - 345
  • [10] Effects of Red Rice Bran Extract on High-Fat Diet-Induced Obesity and Insulin Resistance in Mice
    Munkong, Narongsuk
    Thim-Uam, Arthid
    Pengnet, Sirinat
    Hansakul, Pintusorn
    Somparn, Nuntiya
    Naowaboot, Jarinyaporn
    Tocharus, Jiraporn
    Tocharus, Chainarong
    PREVENTIVE NUTRITION AND FOOD SCIENCE, 2022, 27 (02) : 180 - 187