Uniform Penalty inversion of two-dimensional NMR relaxation data

被引:45
作者
Bortolotti, V. [1 ]
Brown, R. J. S. [2 ]
Fantazzini, P. [3 ,4 ,5 ]
Landi, G. [6 ]
Zama, F. [6 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn DICAM, I-40126 Bologna, Italy
[2] 900 E Harrison Ave,Apt B-9, Pomona, CA 91767 USA
[3] Univ Bologna, Dept Phys & Astron, I-40126 Bologna, Italy
[4] Museo Stor Fis, Piazza Viminale 1, I-00184 Rome, Italy
[5] Ctr Studi & Ric Enrico Fermi, Piazza Viminale 1, I-00184 Rome, Italy
[6] Univ Bologna, Dept Math, I-40126 Bologna, Italy
关键词
NMR data inversion; spatially adapted regularization parameter; nonnegative Tikhonov regularization; MULTIEXPONENTIAL DECAY DATA; LAPLACE INVERSION; REGULARIZATION; CONSTRAINTS; TRANSFORM;
D O I
10.1088/1361-6420/33/1/015003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inversion of two-dimensional NMR data is an ill-posed problem related to the numerical computation of the inverse Laplace transform. The Uniform Penalty (UPEN) algorithm (Borgia et al 1998 J. Magn. Reson. 132 65-77), defined for the inversion of one-dimensional NMR relaxation data, uses Tikhonov-like regularization and optional lower bound constraints in order to implement locally adapted regularization. In this paper, we analyze the regularization properties of this approach. Moreover, we extend the one-dimensional UPEN algorithm to the two-dimensional case and present an efficient implementation based on the Newton Projection method (2DUPEN). Without any a-priori information on the noise norm, 2DUPEN automatically computes the locally adapted regularization parameters and the distribution of the unknown NMR parameters by using variable smoothing. Results of numerical experiments on simulated and real data are presented in order to illustrate the potential of the proposed method in reconstructing peaks and flat regions with the same accuracy.
引用
收藏
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 1999, Athena scientific Belmont
[2]  
[Anonymous], 2002, COMPUTATIONAL METHOD
[3]  
[Anonymous], 1970, SIAM Journal on Mathematical Analysis, DOI DOI 10.1137/0501006
[4]   Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods [J].
Berman, Paula ;
Levi, Ofer ;
Parmet, Yisrael ;
Saunders, Michael ;
Wiesman, Zeev .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2013, 42 (03) :72-88
[5]  
Bertero M., 1998, INTRO INVERSE PROBLE
[7]  
Blumich B., 2005, ESSENTIAL NMR
[8]   Uniform-penalty inversion of multiexponential decay data [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 1998, 132 (01) :65-77
[9]   Uniform-penalty inversion of multiexponential decay data -: II.: Data spacing, T2 data, systematic data errors, and diagnostics [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (02) :273-285
[10]  
Bortolotti V, 2012, UPENWIN SOFTWARE INV