Second-Order Optimality Conditions for Set-Valued Vector Equilibrium Problems

被引:4
作者
Wang, Q. L. [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Sci, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized second-order contingent (adjacent) epiderivatives; Henig efficient solutions; Set-valued vector equilibrium problems; Second-order optimality conditions; Weakly efficient solutions; 90C46; 91B50; EFFICIENT SOLUTIONS; SENSITIVITY-ANALYSIS; SOLUTION MAPPINGS; VARIATIONAL-INEQUALITIES; GENERALIZED SYSTEMS; HENIG EFFICIENCY; OPTIMIZATION; SEMICONTINUITY; SCALARIZATION; CONNECTEDNESS;
D O I
10.1080/01630563.2012.693563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, by using the generalized second-order contingent (adjacent) epiderivatives of set-valued maps, we obtain necessary optimality conditions and sufficient optimality conditions for weakly efficient solutions, Henig efficient solutions to the set-valued vector equilibrium problems with constraints. Some results of this article improve the corresponding results in literatures by lessening the assumption of convexity.
引用
收藏
页码:94 / 112
页数:19
相关论文
共 34 条
[1]   Characterizations of solutions for vector equilibrium problems [J].
Ansari, QH ;
Konnov, IV ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (03) :435-447
[2]   A generalization of vectorial equilibria [J].
Ansari, QH ;
Oettli, W ;
Schlager, D .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 46 (02) :147-152
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]   Vector equilibrium problems with generalized monotone bifunctions [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (03) :527-542
[5]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[6]   Higher order weak epiderivatives and applications to duality and optimality conditions [J].
Chen, C. R. ;
Li, S. J. ;
Teo, K. L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (08) :1389-1399
[7]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[8]   Optimality conditions for set-valued optimization problems [J].
Chen, GY ;
Jahn, J .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 48 (02) :187-200
[9]   Simultaneous vector variational inequalities and vector implicit complementarity problem [J].
Fu, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 93 (01) :141-151
[10]  
Giannessi F, 2000, NONCONVEX OPTIM, V38, P153