Embeddings of Muntz Spaces: Composition Operators

被引:2
作者
Noor, S. Waleed [1 ]
机构
[1] Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
Muntz space; embedding measure; lacunary sequence; Schatten-von Neumann classes; composition operators;
D O I
10.1007/s00020-012-1965-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a strictly increasing sequence of nonnegative real numbers, with , the Muntz spaces are defined as the closure in L (p) ([0, 1]) of the monomials . We discuss how properties of the embedding , where mu is a finite positive Borel measure on the interval [0, 1], have immediate consequences for composition operators on . We give criteria for composition operators to be bounded, compact, or to belong to the Schatten-von Neumann ideals.
引用
收藏
页码:589 / 602
页数:14
相关论文
共 8 条
[1]  
AL ALAM I., 2008, THESIS U LILLE 1, V1
[2]   Essential norms of weighted composition operators on Muntz spaces [J].
Al Alam, Ihab .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) :273-280
[3]  
BORWEIN P, 1995, GRADUATE TEXTS MATH, V161, DOI DOI 10.1007/978-1-4612-0793-1
[4]  
Chalendar I., ANN I FOURI IN PRESS
[5]  
Gurariy V., 2005, LECT NOTES MATH, V1870
[6]  
Noor S.W., 2012, P AM MATH S IN PRESS
[7]   ON THE NUMBER OF TERMS OF A POWER OF A POLYNOMIAL [J].
SCHINZEL, A .
ACTA ARITHMETICA, 1987, 49 (01) :55-70
[8]   Perturbations in Muntz's theorem [J].
Spalsbury, Angela .
JOURNAL OF APPROXIMATION THEORY, 2008, 150 (01) :48-68