A framework of verified eigenvalue bounds for self-adjoint differential operators

被引:55
作者
Liu, Xuefeng [1 ]
机构
[1] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, Niigata 9502181, Japan
基金
日本学术振兴会;
关键词
Self-adjoint differential operator; Eigenvalue bounds; Non-conforming finite element method; Quantitative error estimation; Verified computation; ERROR CONSTANTS; P-0; EXISTENCE;
D O I
10.1016/j.amc.2015.03.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For eigenvalue problems of self-adjoint differential operators, a universal framework is proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the Laplacian operator, by applying Crouzeix-Raviart finite elements, an efficient algorithm is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces. Moreover, for nonconvex domains, for which case there may exist singularities of eigen-functions around re-entrant corners, the proposed algorithm can easily provide eigenvalue bounds. By further adopting the interval arithmetic, the explicit eigenvalue bounds from numerical computations can be mathematically correct. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 355
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[2]  
BABUSKA I, 1991, HDB NUMERICAL ANAL, V2
[3]   METHODS FOR COMPUTING LOWER BOUNDS TO EIGENVALUES OF SELF-ADJOINT OPERATORS [J].
BEATTIE, C ;
GOERISCH, F .
NUMERISCHE MATHEMATIK, 1995, 72 (02) :143-172
[4]  
Bebendorf M, 2003, Z ANAL ANWEND, V22, P751
[5]   THE CALCULATION OF GUARANTEED BOUNDS FOR EIGENVALUES USING COMPLEMENTARY VARIATIONAL-PRINCIPLES [J].
BEHNKE, H .
COMPUTING, 1991, 47 (01) :11-27
[6]  
Behnke H., 1994, STUD COMPUT MATH, P277, DOI DOI 10.1016/0021-8502(94)90369-7
[7]  
Carstensen C., 2014, MATH COMPUT, V5718, P1
[8]  
Carstensen C., 2013, NUMER MATH, P33
[9]  
Goerisch F., 1987, NUMERICAL TREATMENT, V83, P104
[10]   ON THE UPPER AND LOWER BOUNDS OF EIGENVALUES [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) :334-339