LANG'S CONJECTURE AND SHARP HEIGHT ESTIMATES FOR THE ELLIPTIC CURVES y2 = x3 + ax

被引:4
作者
Voutier, Paul [1 ]
Yabuta, Minoru [1 ]
机构
[1] Senri High Sch, Suita, Osaka 5650861, Japan
关键词
Elliptic curve; canonical height; PRIMITIVE DIVISORS; CANONICAL HEIGHT; DIVISIBILITY SEQUENCES; INTEGRAL POINTS; DIFFERENCE;
D O I
10.1142/S1793042113500176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For elliptic curves given by the equation E-a : y(2) = x(3) + ax, we establish the best-possible version of Lang's conjecture on the lower bound for the canonical height of non-torsion rational points along with best-possible upper and lower bounds for the difference between the canonical and logarithmic height.
引用
收藏
页码:1141 / 1170
页数:30
相关论文
共 19 条
  • [1] [Anonymous], 2015, RATIONAL POINTS ELLI, DOI DOI 10.1007/978-3-319-18588-0
  • [2] BOMBIERI E., 2006, HEIGHTS DIOPHANTINE
  • [3] Integral points in arithmetic progression on y2=x(x2-n2)
    Bremner, A
    Silverman, JH
    Tzanakis, N
    [J]. JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 187 - 208
  • [4] Height difference bounds for elliptic curves over number fields
    Cremona, JE
    Prickett, M
    Siksek, S
    [J]. JOURNAL OF NUMBER THEORY, 2006, 116 (01) : 42 - 68
  • [5] Points of small height on elliptic curves
    David, S
    [J]. JOURNAL OF NUMBER THEORY, 1997, 64 (01) : 104 - 129
  • [6] Primitive divisors of elliptic divisibility sequences
    Everest, G
    Mclaren, G
    Ward, T
    [J]. JOURNAL OF NUMBER THEORY, 2006, 118 (01) : 71 - 89
  • [7] PRIMITIVE DIVISORS ON TWISTS OF FERMAT'S CUBIC
    Everest, Graham
    Ingram, Patrick
    Stevens, Shaun
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2009, 12 : 54 - 81
  • [8] THE CANONICAL HEIGHT AND INTEGRAL POINTS ON ELLIPTIC-CURVES
    HINDRY, M
    SILVERMAN, JH
    [J]. INVENTIONES MATHEMATICAE, 1988, 93 (02) : 419 - 450
  • [9] Lang Serge., 1978, ELLIPTIC CURVES DIOP, V231
  • [10] COUNTING POINTS OF SMALL HEIGHT ON ELLIPTIC-CURVES
    MASSER, DW
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (02): : 247 - 265