Programmable Metasurface-Based Multicast Systems: Design and Analysis

被引:77
作者
Hu, Xiaoling [1 ,2 ]
Zhong, Caijun [1 ,2 ]
Zhu, Yongxu [3 ]
Chen, Xiaoming [1 ,2 ]
Zhang, Zhaoyang [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Zhejiang Prov Key Lab Informat Proc Commun & Netw, Hangzhou 310027, Peoples R China
[3] London South Bank Univ, Div Comp Sci & Informat, London SE1 0AA, England
基金
中国国家自然科学基金;
关键词
Radio frequency; Radio transmitters; Channel estimation; Training; Wireless communication; Programmable metasurface; multicast systems; channel estimation; INTELLIGENT REFLECTING SURFACE; WIRELESS;
D O I
10.1109/JSAC.2020.3000809
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable performance as the exhaustive beam searching method but with much lower time overhead. Then, a closed-form expression for the achievable multicast rate is presented, which is valid for arbitrary system configurations. In addition, for certain asymptotic scenario, simple approximated expressions for the multicase rate are derived. Closed-form solutions are obtained for the optimal power allocation scheme, and it is shown that equal power allocation is optimal when the pilot power or the number of reflecting elements is sufficiently large. However, it is desirable to allocate more power to weaker users when there are a large number of RF chains. The analytical findings indicate that, with large pilot power, the multicast rate is determined by the weakest user. Also, increasing the number of radio frequency (RF) chains or reflecting elements can significantly improve the multicast rate, and as the phase shift number becomes larger, the multicast rate improves first and gradually converges to a limit. Moreover, increasing the number of users would significantly degrade the multicast rate, but this rate loss can be compensated by implementing a large number of reflecting elements.
引用
收藏
页码:1763 / 1776
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2020, POSTGRAD MED 0404, DOI DOI 10.1080/00325481.2020.1744335
[2]  
[Anonymous], 2019, SHENZHEN STAT YB
[3]  
Bjornson E., 2019, ARXIV190603949
[4]   Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? [J].
Bjornson, Emil ;
Ozdogan, Ozgecan ;
Larsson, Erik G. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (02) :244-248
[5]   Intelligent Reflecting Surface: A Programmable Wireless Environment for Physical Layer Security [J].
Chen, Jie ;
Liang, Ying-Chang ;
Pei, Yiyang ;
Guo, Huayan .
IEEE ACCESS, 2019, 7 :82599-82612
[6]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[7]   Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces [J].
Hu, Sha ;
Rusek, Fredrik ;
Edfors, Ove .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (10) :2746-2758
[8]  
Huang C., 2019, PROC IEEE 20 INT WOR, P1
[9]  
Huang CF, 2018, AEBMR ADV ECON, V66, P1
[10]   Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication [J].
Huang, Chongwen ;
Zappone, Alessio ;
Alexandropoulos, George C. ;
Debbah, Merouane ;
Yuen, Chau .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4157-4170