Linear Chromatic Bounds for a Subfamily of 3K1-free Graphs

被引:17
作者
Choudum, S. A. [1 ]
Karthick, T. [1 ]
Shalu, M. A. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Birla Inst Technol & Sci, Dept Math, Pilani 403726, Goa, India
关键词
Graphs; Chromatic number; Clique number; chi-binding function;
D O I
10.1007/s00373-008-0801-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary class of graphs g, there may not exist a function f such that chi(G) <= f (omega(G)), for every G epsilon g. When such a function exists, it is called a. chi-binding function for g. The problem of finding an optimal chi-binding function for the class of 3K(1)-free graphs is open. In this paper, we obtain linear chi-binding function for the class of {3K(1), H}free graphs, where H is one of the following graphs: K-1 + C-4, (K-3 boolean OR K-1) + K-1, K-1 + P-4, K-4 boolean OR K-1, House graph and Kite graph. We first describe structures of these graphs and then derive chi-binding functions.
引用
收藏
页码:413 / 428
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1985, P INT C COMB AN ITS
[2]  
Bondy J.A., 1976, Graph Theory and Its Applications
[3]  
BROWN JI, 1990, ARS COMBINATORIA, V30, P141
[4]   Perfect coloring and linearly χ-bound P6-Free graphs [J].
Choudum, S. A. ;
Karthick, T. ;
Shalu, M. A. .
JOURNAL OF GRAPH THEORY, 2007, 54 (04) :293-306
[5]  
CHOUDUM SA, 2005, AUSTRALASIAN J COMBI, V32, P111
[6]  
CHUDNOVSKY M, 2004, CLAW FREE GRAP UNPUB, V7
[7]   Berge Trigraphs [J].
Chudnovsky, Maria .
JOURNAL OF GRAPH THEORY, 2006, 53 (01) :1-55
[8]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229
[9]   ON THE CHROMATIC NUMBER OF A GRAPH WITH 2 FORBIDDEN SUBGRAPHS [J].
DHURANDHAR, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (01) :1-6
[10]   ON GRAPHS WITHOUT P-5 AND (P-5)OVER-BAR [J].
FOUQUET, JL ;
GIAKOUMAKIS, V ;
MAIRE, F ;
THUILLIER, H .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :33-44