The stable subset of a univalent self-map

被引:3
作者
Arosio, Leandro [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
基金
欧洲研究理事会;
关键词
Backward orbits; Canonical models; Holomorphic iteration; BOUNDARY FIXED-POINTS; BACKWARD-ITERATION; ANGULAR DERIVATIVES; WOLFF POINT; UNIT DISK;
D O I
10.1007/s00209-015-1521-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete description of the stable subset (the union of all backward orbit with bounded step) and of the pre-models of a univalent self-map , where X is a Kobayashi hyperbolic cocompact complex manifold, such as the ball or the polydisc in . The result is obtained studying the complex structure of a decreasing intersection of complex manifolds, all biholomorphic to X.
引用
收藏
页码:1089 / 1110
页数:22
相关论文
共 21 条
[1]  
Abate M., 1991, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V18, P167
[2]  
Abate M., CONT MATH IN PRESS
[3]   Backward iteration in strongly convex domains [J].
Abate, Marco ;
Raissy, Jasmin .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2837-2854
[4]  
Abate Marco., 1989, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry
[5]  
Arosio L., T AM MATH S IN PRESS, DOI [10.1090/tran/6593, DOI 10.1090/TRAN/6593]
[6]   Fixed points of commuting holomorphic mappings other than the Wolff point [J].
Bracci, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2569-2584
[7]   Analytic flows on the unit disk:: Angular derivatives and boundary fixed points [J].
Contreras, MD ;
Díaz-Madrigal, S .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 222 (02) :253-286
[9]  
Fornaess J.E., 1981, MATH ANN, V255, P351
[10]   INCREASING SEQUENCE OF STEIN MANIFOLDS WHOSE LIMIT IS NOT STEIN [J].
FORNAESS, JE .
MATHEMATISCHE ANNALEN, 1976, 223 (03) :275-277