Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source

被引:97
作者
Yong, Xuelin [1 ,2 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ]
Huang, Yehui [1 ]
Liu, Yong [1 ]
机构
[1] North China Elect Power Univ, Sch Math Sci & Phys, Beijing 102206, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[5] North West Univ, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
基金
美国国家科学基金会;
关键词
KPI equation with a self-consistent source; Hirota bilinear method; Lump solution; NONLINEAR INTEGRABLE SYSTEMS; KP EQUATION; DARBOUX TRANSFORMATIONS; SOLITON-SOLUTIONS; KINK SOLUTIONS; BACKLUND TRANSFORMATION; VRIES EQUATION; KDV HIERARCHY; BKP EQUATION; JIMBO-MIWA;
D O I
10.1016/j.camwa.2018.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on symbolic computations, lump solutions to the Kadomtsev-Petviashvili I (KPI) equation with a self-consistent source (KPIESCS) are constructed by using the Hirota bilinear method and an ansatz technique. In contrast with lower-order lump solutions of the Kadomtsev-Petviashvili (KP) equation, the presented lump solutions to the KPIESCS exhibit more diverse nonlinear phenomena. The method used here is more natural and simpler. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3414 / 3419
页数:6
相关论文
共 52 条
[21]   An extended Harry Dym hierarchy [J].
Ma, Wen-Xiu .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
[22]   Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources [J].
Ma, WX .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1453-1458
[23]   Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions [J].
Ma, WX ;
You, YC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) :1753-1778
[24]   Soliton, positon and negaton solutions to a Schrodinger self-consistent source equation [J].
Ma, WX .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (12) :3017-3019
[25]   2-DIMENSIONAL SOLITONS OF KADOMTSEV-PETVIASHVILI EQUATION AND THEIR INTERACTION [J].
MANAKOV, SV ;
ZAKHAROV, VE ;
BORDAG, LA ;
ITS, AR ;
MATVEEV, VB .
PHYSICS LETTERS A, 1977, 63 (03) :205-206
[26]   CAPTURE AND CONFINEMENT OF SOLITONS IN NONLINEAR INTEGRABLE SYSTEMS [J].
MELNIKOV, VK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (03) :451-468
[27]   INTEGRATION METHOD OF THE KORTEWEG DE VRIES EQUATION WITH A SELF-CONSISTENT SOURCE [J].
MELNIKOV, VK .
PHYSICS LETTERS A, 1988, 133 (09) :493-496
[28]   NEW METHOD FOR DERIVING NONLINEAR INTEGRABLE SYSTEMS [J].
MELNIKOV, VK .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1106-1113
[29]   INTEGRATION OF THE NONLINEAR SCHROEDINGER EQUATION WITH A SELF-CONSISTENT SOURCE [J].
MELNIKOV, VK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (02) :359-381