Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source

被引:96
作者
Yong, Xuelin [1 ,2 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ]
Huang, Yehui [1 ]
Liu, Yong [1 ]
机构
[1] North China Elect Power Univ, Sch Math Sci & Phys, Beijing 102206, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[5] North West Univ, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
基金
美国国家科学基金会;
关键词
KPI equation with a self-consistent source; Hirota bilinear method; Lump solution; NONLINEAR INTEGRABLE SYSTEMS; KP EQUATION; DARBOUX TRANSFORMATIONS; SOLITON-SOLUTIONS; KINK SOLUTIONS; BACKLUND TRANSFORMATION; VRIES EQUATION; KDV HIERARCHY; BKP EQUATION; JIMBO-MIWA;
D O I
10.1016/j.camwa.2018.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on symbolic computations, lump solutions to the Kadomtsev-Petviashvili I (KPI) equation with a self-consistent source (KPIESCS) are constructed by using the Hirota bilinear method and an ansatz technique. In contrast with lower-order lump solutions of the Kadomtsev-Petviashvili (KP) equation, the presented lump solutions to the KPIESCS exhibit more diverse nonlinear phenomena. The method used here is more natural and simpler. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3414 / 3419
页数:6
相关论文
共 52 条
[1]   The multisoliton solutions of the KP equation with self-consistent sources [J].
Deng, SF ;
Chen, DY ;
Zhang, DJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) :2184-2192
[2]   ON THE INVERSE SCATTERING TRANSFORM OF MULTIDIMENSIONAL NONLINEAR EQUATIONS RELATED TO 1ST-ORDER SYSTEMS IN THE PLANE [J].
FOKAS, AS ;
ABLOWITZ, MJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) :2494-2505
[3]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[4]   LUMP SOLUTIONS OF THE BKP EQUATION [J].
GILSON, CR ;
NIMMO, JJC .
PHYSICS LETTERS A, 1990, 147 (8-9) :472-476
[5]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]  
Hirota R., 2004, The Direct Method in Soliton Theory
[7]   New type of Kadomtsev-Petviashvili equation with self-consistent sources and its bilinear Backlund transformation [J].
Hu, Xing-Biao ;
Wang, Hong-Yan .
INVERSE PROBLEMS, 2007, 23 (04) :1433-1444
[8]   Construction of dKP and BKP equations with self-consistent sources [J].
Hu, Xing-Biao ;
Wang, Hong-Yan .
INVERSE PROBLEMS, 2006, 22 (05) :1903-1920
[9]   Dromion and lump solutions of the Ishimori-I equation [J].
Imai, K .
PROGRESS OF THEORETICAL PHYSICS, 1997, 98 (05) :1013-1023
[10]   Soliton-like, periodic wave and rational solutions for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation in the incompressible fluid [J].
Jia, Shu-Liang ;
Gao, Yi-Tian ;
Hu, Lei ;
Huang, Qian-Min ;
Hu, Wen-Qiang .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 102 :273-283