Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy

被引:72
作者
Nalam, Prathima C. [1 ]
Gosvami, Nitya N. [1 ]
Caporizzo, Matthew A. [2 ]
Composto, Russell J. [2 ]
Carpick, Robert W. [1 ,2 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
MECHANICAL-PROPERTIES; EXTRACELLULAR-MATRIX; POLYMER GELS; CELLS; VISCOELASTICITY; MICRORHEOLOGY; CARTILAGE; TISSUE; ELASTICITY; ADHESION;
D O I
10.1039/c5sm01143d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan d) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force-displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near similar to 100 Hz. The softer gels' storage modulus increased from 7.9 +/- 0.4 to 14.5 +/- 2.1 kPa (similar to 85%), and the stiffer gels' storage modulus increased from 16.3 +/- 1.1 to 31.7 +/- 5.0 kPa (similar to 95%). This increase at high frequencies may be attributed to a contribution from solvent confinement in the hydrogel (poroelasticity). The storage moduli measured by both macrorheometry and AFM FD curves were comparable to those measured using the modulation method at their overlapping frequencies (10-25 Hz). In all cases, care was taken to ensure the contact mechanics models were applied within the important limit of small relative deformations. This study thus highlights possible transitions in the probe-material contact mechanical behaviour for soft matter, especially when the applied strain rates and the material relaxation rates become comparable. In particular, at low frequencies, the modulus follows Hertzian contact mechanics, while at high frequencies adhesive contact is well represented by punch-like behaviour. More generally, use of the Hertz model on hydrogels at high loading rates, at high strains, or during the retraction portion of FD curves, leads to significant errors in the calculated moduli.
引用
收藏
页码:8165 / 8178
页数:14
相关论文
共 50 条
  • [31] FC_analysis: a tool for investigating atomic force microscopy maps of force curves
    Dinarelli, Simone
    Girasole, Marco
    Longo, Giovanni
    BMC BIOINFORMATICS, 2018, 19
  • [32] Atomic force microscopy and its contribution to understanding the development of the nervous system
    Franze, Kristian
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2011, 21 (05) : 530 - 537
  • [33] Spatial horizons in amplitude and frequency modulation atomic force microscopy
    Font, Josep
    Santos, Sergio
    Barcons, Victor
    Thomson, Neil H.
    Verdaguer, Albert
    Chiesa, Matteo
    NANOSCALE, 2012, 4 (07) : 2463 - 2469
  • [34] Atomic Force Microscopy as a Tool for the Investigation of Living Cells
    Morkvenaite-Vilkonciene, Inga
    Ramanaviciene, Almira
    Ramanavicius, Arunas
    MEDICINA-LITHUANIA, 2013, 49 (04): : 155 - 164
  • [35] Insights in Cell Biomechanics through Atomic Force Microscopy
    Kerdegari, Sajedeh
    Canepa, Paolo
    Odino, Davide
    Oropesa-Nunez, Reinier
    Relini, Annalisa
    Cavalleri, Ornella
    Canale, Claudio
    MATERIALS, 2023, 16 (08)
  • [36] Atomic force microscopy for the investigation of molecular and cellular behavior
    Ozkan, Alper D.
    Topal, Ahmet E.
    Dana, Aykutlu
    Guler, Mustafa O.
    Tekinay, Ayse B.
    MICRON, 2016, 89 : 60 - 76
  • [37] Stretching single polysaccharides and proteins using atomic force microscopy
    Marszalek, Piotr E.
    Dufrene, Yves F.
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) : 3523 - 3534
  • [38] Probing stem cell differentiation using atomic force microscopy
    Liang, Xiaobin
    Shi, Xuetao
    Ostrovidov, Serge
    Wu, Hongkai
    Nakajima, Ken
    APPLIED SURFACE SCIENCE, 2016, 366 : 254 - 259
  • [39] Determination of solid surface tension at the nano-scale using atomic force microscopy
    Drelich, Jaroslaw
    Tormoen, Garth W.
    Beach, Elvin R.
    CONTACT ANGLE, WETTABILITY AND ADHESION, VOL 4, 2006, : 237 - +
  • [40] Quantification of the erythrocyte deformability using atomic force microscopy: Correlation study of the erythrocyte deformability with atomic force microscopy and hemorheology
    Chen, Xianxian
    Feng, Lie
    Jin, Hua
    Feng, Shufen
    Yu, Yao
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2009, 43 (03) : 241 - 249