Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy

被引:39
|
作者
Pande, Ashvin N.
Kohler, Rainer H.
Aikawa, Elena
Weissleder, Ralph
Jaffer, Farouc A.
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Ctr Mol Imaging Res, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Ctr Mol Imaging, Charlestown, MA 02129 USA
[3] Harvard Univ, Sch Med, Donald Reynolds Cardiovasc Clin Res Ctr, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Dept Med,Cardiol Div, Charlestown, MA 02129 USA
[5] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Cardiovasc, Boston, MA 02115 USA
关键词
atherosclerosis; near-infrared fluorescence; imaging; laser scanning microscopy; macrophage; nanoparticle;
D O I
10.1117/1.2186337
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular and cellular mechanisms of atherogenesis and its treatment are largely being unraveled by in vitro techniques. We describe methodology to directly image macrophage cell activity in vivo in a murine model of atherosclerosis using laser scanning fluorescence microscopy (LSFM) and a macrophage-targeted, near-infrared fluorescent (NIRF) magnetofluorescent nanoparticle (MFNP). Atherosclerotic apolipoprotein E deficient (apoE(-/-)) mice (n = 10) are injected with MFNP or 0.9% saline, and wild-type mice (n = 4) are injected with MFNP as additional controls. After 24 h, common carotid arteries are surgically exposed and prepared for LSFM. Multichannel LSFM of MFNP-enhanced carotid atheroma (5 X 5-mu m inplane resolution) shows a strong focal NIRF signal, with a plaque target-to-background ratio of 3.9 +/- 1.8. Minimal NIRF signal is observed in control mice. Spectrally resolved indocyanine green (ICG) fluorescence angiograms confirm the intravascular location of atheroma. On ex vivo fluorescence reflectance imaging, greater NIRF plaque signal is seen in apoE(-/-) MFNP mice compared to controls (p < 0.01). The NIRF signal correlates well with immunostained macrophages, both by stained surface area (r = 0.77) and macrophage number (r = 0.86). The validated experimental methodology thus establishes a platform for investigating macrophage activity in atherosclerosis in vivo, and has implications for the detection of clinical vulnerable plaques. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy
    Massachusetts General Hospital, Harvard Medical School, Center for Molecular Imaging Research, MGH-CMIR - 149 13th St., Charlestown, MA 02129, United States
    不详
    不详
    不详
    J Biomed Opt, 2006, 2
  • [2] Detection of macrophage activity in atherosclerosis in vivo using multi-channel, high-resolution laser scanning fluorescent microscopy
    Pande, AN
    Kohler, RH
    Aikawa, E
    Wiessleder, R
    Jaffer, FA
    CIRCULATION, 2005, 112 (17) : U286 - U286
  • [3] High-resolution laser scanning microscopy with saturated excitation of fluorescence
    Fujita, Katsumasa
    Kawano, Shogo
    Kobayashi, Minoru
    Kawata, Satoshi
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XIV, 2007, 6443
  • [4] DEVELOPMENT OF HIGH-RESOLUTION OPTICAL-SCANNING FLUORESCENCE MICROSCOPY
    OKAZAKI, S
    SASATANI, H
    HATANO, H
    HAYASHI, T
    NAGAMURA, T
    MIKROCHIMICA ACTA, 1988, 3 (1-6) : 87 - 95
  • [5] HIGH-RESOLUTION SCANNING ION MICROSCOPY
    SCHWARZSCHILD, BM
    PHYSICS TODAY, 1982, 35 (07) : 20 - 22
  • [6] In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy
    Megens, Remco T. A.
    Reitsma, Sietze
    Prinzen, Lenneke
    Egbrink, Mirjam G. A. Oude
    Engels, Wim
    Leenders, Peter J. A.
    Brunenberg, Ellen J. L.
    Reesink, Koen D.
    Janssen, Ben J. A.
    Romeny, Bart M. ter Haar
    Slaaf, Dick W.
    van Zandvoort, Marc A. M. J.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
  • [7] HIGH-RESOLUTION IMAGING WITH SCANNING LASER ACOUSTIC MICROSCOPY USING DIGITAL IMAGE-PROCESSING
    MUELLER, RK
    ROBBINS, WP
    SOUMEKH, B
    SKARR, T
    ZHOU, Z
    LI, H
    RUDD, E
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1986, 33 (01) : 91 - 91
  • [8] Nanometre resolution using high-resolution scanning electron microscopy corroborated by atomic force microscopy
    Stevens, Sam M.
    Cubillas, Pablo
    Jansson, Kjell
    Terasaki, Osamu
    Anderson, Michael W.
    Wright, Paul A.
    Castro, Maria
    CHEMICAL COMMUNICATIONS, 2008, (33) : 3894 - 3896
  • [9] In vivo high-resolution fluorescence endoscopy
    Jung, JC
    Schnitzer, MJ
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 586A - 586A
  • [10] Confocal in vivo microscopy, confocal laser scanning and fluorescence microscopy in keratoconus
    Somodi, S
    Hahnel, C
    Slowik, C
    Richter, A
    Guthoff, R
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 4686 - 4686